|
@@ -0,0 +1,126 @@
|
|
|
+import torch
|
|
|
+import yaml
|
|
|
+from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
|
+from basicsr.data.paired_image_dataset import PairedImageDataset
|
|
|
+from basicsr.losses.losses import GANLoss, L1Loss, PerceptualLoss
|
|
|
+
|
|
|
+from realesrgan.archs.discriminator_arch import UNetDiscriminatorSN
|
|
|
+from realesrgan.models.realesrgan_model import RealESRGANModel
|
|
|
+from realesrgan.models.realesrnet_model import RealESRNetModel
|
|
|
+
|
|
|
+
|
|
|
+def test_realesrnet_model():
|
|
|
+ with open('tests/data/test_realesrnet_model.yml', mode='r') as f:
|
|
|
+ opt = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
+
|
|
|
+ # build model
|
|
|
+ model = RealESRNetModel(opt)
|
|
|
+ # test attributes
|
|
|
+ assert model.__class__.__name__ == 'RealESRNetModel'
|
|
|
+ assert isinstance(model.net_g, RRDBNet)
|
|
|
+ assert isinstance(model.cri_pix, L1Loss)
|
|
|
+ assert isinstance(model.optimizers[0], torch.optim.Adam)
|
|
|
+
|
|
|
+ # prepare data
|
|
|
+ gt = torch.rand((1, 3, 32, 32), dtype=torch.float32)
|
|
|
+ kernel1 = torch.rand((1, 5, 5), dtype=torch.float32)
|
|
|
+ kernel2 = torch.rand((1, 5, 5), dtype=torch.float32)
|
|
|
+ sinc_kernel = torch.rand((1, 5, 5), dtype=torch.float32)
|
|
|
+ data = dict(gt=gt, kernel1=kernel1, kernel2=kernel2, sinc_kernel=sinc_kernel)
|
|
|
+ model.feed_data(data)
|
|
|
+ # check dequeue
|
|
|
+ model.feed_data(data)
|
|
|
+ # check data shape
|
|
|
+ assert model.lq.shape == (1, 3, 8, 8)
|
|
|
+ assert model.gt.shape == (1, 3, 32, 32)
|
|
|
+
|
|
|
+ # change probability to test if-else
|
|
|
+ model.opt['gaussian_noise_prob'] = 0
|
|
|
+ model.opt['gray_noise_prob'] = 0
|
|
|
+ model.opt['second_blur_prob'] = 0
|
|
|
+ model.opt['gaussian_noise_prob2'] = 0
|
|
|
+ model.opt['gray_noise_prob2'] = 0
|
|
|
+ model.feed_data(data)
|
|
|
+ # check data shape
|
|
|
+ assert model.lq.shape == (1, 3, 8, 8)
|
|
|
+ assert model.gt.shape == (1, 3, 32, 32)
|
|
|
+
|
|
|
+ # ----------------- test nondist_validation -------------------- #
|
|
|
+ # construct dataloader
|
|
|
+ dataset_opt = dict(
|
|
|
+ name='Demo',
|
|
|
+ dataroot_gt='tests/data/gt',
|
|
|
+ dataroot_lq='tests/data/lq',
|
|
|
+ io_backend=dict(type='disk'),
|
|
|
+ scale=4,
|
|
|
+ phase='val')
|
|
|
+ dataset = PairedImageDataset(dataset_opt)
|
|
|
+ dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
|
|
+ assert model.is_train is True
|
|
|
+ model.nondist_validation(dataloader, 1, None, False)
|
|
|
+ assert model.is_train is True
|
|
|
+
|
|
|
+
|
|
|
+def test_realesrgan_model():
|
|
|
+ with open('tests/data/test_realesrgan_model.yml', mode='r') as f:
|
|
|
+ opt = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
+
|
|
|
+ # build model
|
|
|
+ model = RealESRGANModel(opt)
|
|
|
+ # test attributes
|
|
|
+ assert model.__class__.__name__ == 'RealESRGANModel'
|
|
|
+ assert isinstance(model.net_g, RRDBNet) # generator
|
|
|
+ assert isinstance(model.net_d, UNetDiscriminatorSN) # discriminator
|
|
|
+ assert isinstance(model.cri_pix, L1Loss)
|
|
|
+ assert isinstance(model.cri_perceptual, PerceptualLoss)
|
|
|
+ assert isinstance(model.cri_gan, GANLoss)
|
|
|
+ assert isinstance(model.optimizers[0], torch.optim.Adam)
|
|
|
+ assert isinstance(model.optimizers[1], torch.optim.Adam)
|
|
|
+
|
|
|
+ # prepare data
|
|
|
+ gt = torch.rand((1, 3, 32, 32), dtype=torch.float32)
|
|
|
+ kernel1 = torch.rand((1, 5, 5), dtype=torch.float32)
|
|
|
+ kernel2 = torch.rand((1, 5, 5), dtype=torch.float32)
|
|
|
+ sinc_kernel = torch.rand((1, 5, 5), dtype=torch.float32)
|
|
|
+ data = dict(gt=gt, kernel1=kernel1, kernel2=kernel2, sinc_kernel=sinc_kernel)
|
|
|
+ model.feed_data(data)
|
|
|
+ # check dequeue
|
|
|
+ model.feed_data(data)
|
|
|
+ # check data shape
|
|
|
+ assert model.lq.shape == (1, 3, 8, 8)
|
|
|
+ assert model.gt.shape == (1, 3, 32, 32)
|
|
|
+
|
|
|
+ # change probability to test if-else
|
|
|
+ model.opt['gaussian_noise_prob'] = 0
|
|
|
+ model.opt['gray_noise_prob'] = 0
|
|
|
+ model.opt['second_blur_prob'] = 0
|
|
|
+ model.opt['gaussian_noise_prob2'] = 0
|
|
|
+ model.opt['gray_noise_prob2'] = 0
|
|
|
+ model.feed_data(data)
|
|
|
+ # check data shape
|
|
|
+ assert model.lq.shape == (1, 3, 8, 8)
|
|
|
+ assert model.gt.shape == (1, 3, 32, 32)
|
|
|
+
|
|
|
+ # ----------------- test nondist_validation -------------------- #
|
|
|
+ # construct dataloader
|
|
|
+ dataset_opt = dict(
|
|
|
+ name='Demo',
|
|
|
+ dataroot_gt='tests/data/gt',
|
|
|
+ dataroot_lq='tests/data/lq',
|
|
|
+ io_backend=dict(type='disk'),
|
|
|
+ scale=4,
|
|
|
+ phase='val')
|
|
|
+ dataset = PairedImageDataset(dataset_opt)
|
|
|
+ dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
|
|
+ assert model.is_train is True
|
|
|
+ model.nondist_validation(dataloader, 1, None, False)
|
|
|
+ assert model.is_train is True
|
|
|
+
|
|
|
+ # ----------------- test optimize_parameters -------------------- #
|
|
|
+ model.feed_data(data)
|
|
|
+ model.optimize_parameters(1)
|
|
|
+ assert model.output.shape == (1, 3, 32, 32)
|
|
|
+ assert isinstance(model.log_dict, dict)
|
|
|
+ # check returned keys
|
|
|
+ expected_keys = ['l_g_pix', 'l_g_percep', 'l_g_gan', 'l_d_real', 'out_d_real', 'l_d_fake', 'out_d_fake']
|
|
|
+ assert set(expected_keys).issubset(set(model.log_dict.keys()))
|