Browse Source

update readme

Xintao 3 years ago
parent
commit
4356ba0578
4 changed files with 9 additions and 8 deletions
  1. 1 0
      README.md
  2. 5 5
      Training.md
  3. 2 2
      options/train_realesrgan_x4plus.yml
  4. 1 1
      options/train_realesrnet_x4plus.yml

+ 1 - 0
README.md

@@ -97,6 +97,7 @@ This executable file is based on the wonderful [Tencent/ncnn](https://github.com
     # We use BasicSR for both training and inference
     pip install basicsr
     pip install -r requirements.txt
+    python setup.py develop
     ```
 
 ## :zap: Quick Inference

+ 5 - 5
Training.md

@@ -44,7 +44,7 @@ DF2K_HR_sub/000001_s003.png
         name: DF2K+OST
         type: RealESRGANDataset
         dataroot_gt: datasets/DF2K  # modify to the root path of your folder
-        meta_info: data/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt  # modify to your own generate meta info txt
+        meta_info: realesrgan/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt  # modify to your own generate meta info txt
         io_backend:
             type: disk
     ```
@@ -76,12 +76,12 @@ DF2K_HR_sub/000001_s003.png
 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
     ```bash
     CUDA_VISIBLE_DEVICES=0,1,2,3 \
-    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug
+    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --debug
     ```
 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
     ```bash
     CUDA_VISIBLE_DEVICES=0,1,2,3 \
-    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume
+    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrnet_x4plus.yml --launcher pytorch --auto_resume
     ```
 
 ## Train Real-ESRGAN
@@ -91,10 +91,10 @@ DF2K_HR_sub/000001_s003.png
 1. Before the formal training, you may run in the `--debug` mode to see whether everything is OK. We use four GPUs for training:
     ```bash
     CUDA_VISIBLE_DEVICES=0,1,2,3 \
-    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug
+    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --debug
     ```
 1. The formal training. We use four GPUs for training. We use the `--auto_resume` argument to automatically resume the training if necessary.
     ```bash
     CUDA_VISIBLE_DEVICES=0,1,2,3 \
-    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume
+    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 realesrgan/train.py -opt options/train_realesrgan_x4plus.yml --launcher pytorch --auto_resume
     ```

+ 2 - 2
options/train_realesrgan_x4plus.yml

@@ -39,7 +39,7 @@ datasets:
     name: DF2K+OST
     type: RealESRGANDataset
     dataroot_gt: datasets/DF2K
-    meta_info: data/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
+    meta_info: realesrgan/data/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
     io_backend:
       type: disk
 
@@ -100,7 +100,7 @@ network_d:
 # path
 path:
   # use the pre-trained Real-ESRNet model
-  pretrain_network_g: experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/model/net_g_1000000.pth
+  pretrain_network_g: experiments/train_RealESRNetx4plus_1000k_B12G4_fromESRGAN/models/net_g_1000000.pth
   param_key_g: params_ema
   strict_load_g: true
   resume_state: ~

+ 1 - 1
options/train_realesrnet_x4plus.yml

@@ -36,7 +36,7 @@ datasets:
     name: DF2K+OST
     type: RealESRGANDataset
     dataroot_gt: datasets/DF2K
-    meta_info: data/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
+    meta_info: realesrgan/data/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
     io_backend:
       type: disk