|
@@ -5,28 +5,30 @@ import os
|
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
|
|
|
|
from realesrgan import RealESRGANer
|
|
|
+from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
|
|
|
|
|
|
|
|
def main():
|
|
|
"""Inference demo for Real-ESRGAN.
|
|
|
"""
|
|
|
parser = argparse.ArgumentParser()
|
|
|
- parser.add_argument('--input', type=str, default='inputs', help='Input image or folder')
|
|
|
+ parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
|
|
|
parser.add_argument(
|
|
|
- '--model_path',
|
|
|
+ '-n',
|
|
|
+ '--model_name',
|
|
|
type=str,
|
|
|
- default='experiments/pretrained_models/RealESRGAN_x4plus.pth',
|
|
|
- help='Path to the pre-trained model')
|
|
|
- parser.add_argument('--output', type=str, default='results', help='Output folder')
|
|
|
- parser.add_argument('--netscale', type=int, default=4, help='Upsample scale factor of the network')
|
|
|
- parser.add_argument('--outscale', type=float, default=4, help='The final upsampling scale of the image')
|
|
|
+ default='RealESRGAN_x4plus',
|
|
|
+ help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus'
|
|
|
+ 'RealESRGANv2-anime-xsx2 | RealESRGANv2-animevideo-xsx2-nousm | RealESRGANv2-animevideo-xsx2'
|
|
|
+ 'RealESRGANv2-anime-xsx4 | RealESRGANv2-animevideo-xsx4-nousm | RealESRGANv2-animevideo-xsx4'))
|
|
|
+ parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
|
|
|
+ parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
|
|
|
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
|
|
|
- parser.add_argument('--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
|
|
|
+ parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
|
|
|
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
|
|
|
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
|
|
|
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
|
|
|
parser.add_argument('--half', action='store_true', help='Use half precision during inference')
|
|
|
- parser.add_argument('--block', type=int, default=23, help='num_block in RRDB')
|
|
|
parser.add_argument(
|
|
|
'--alpha_upsampler',
|
|
|
type=str,
|
|
@@ -39,16 +41,39 @@ def main():
|
|
|
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
- if 'RealESRGAN_x4plus_anime_6B.pth' in args.model_path:
|
|
|
- args.block = 6
|
|
|
- elif 'RealESRGAN_x2plus.pth' in args.model_path:
|
|
|
- args.netscale = 2
|
|
|
+ # determine models according to model names
|
|
|
+ args.model_name = args.model_name.split('.')[0]
|
|
|
+ if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
|
+ netscale = 4
|
|
|
+ elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
|
+ netscale = 4
|
|
|
+ elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
|
+ netscale = 2
|
|
|
+ elif args.model_name in [
|
|
|
+ 'RealESRGANv2-anime-xsx2', 'RealESRGANv2-animevideo-xsx2-nousm', 'RealESRGANv2-animevideo-xsx2'
|
|
|
+ ]: # x2 VGG-style model (XS size)
|
|
|
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
|
|
|
+ netscale = 2
|
|
|
+ elif args.model_name in [
|
|
|
+ 'RealESRGANv2-anime-xsx4', 'RealESRGANv2-animevideo-xsx4-nousm', 'RealESRGANv2-animevideo-xsx4'
|
|
|
+ ]: # x4 VGG-style model (XS size)
|
|
|
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
|
|
|
+ netscale = 4
|
|
|
|
|
|
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=args.block, num_grow_ch=32, scale=args.netscale)
|
|
|
+ # determine model paths
|
|
|
+ model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth')
|
|
|
+ if not os.path.isfile(model_path):
|
|
|
+ model_path = os.path.join('realesrgan/weights', args.model_name + '.pth')
|
|
|
+ if not os.path.isfile(model_path):
|
|
|
+ raise ValueError(f'Model {args.model_name} does not exist.')
|
|
|
|
|
|
+ # restorer
|
|
|
upsampler = RealESRGANer(
|
|
|
- scale=args.netscale,
|
|
|
- model_path=args.model_path,
|
|
|
+ scale=netscale,
|
|
|
+ model_path=model_path,
|
|
|
model=model,
|
|
|
tile=args.tile,
|
|
|
tile_pad=args.tile_pad,
|
|
@@ -80,15 +105,6 @@ def main():
|
|
|
else:
|
|
|
img_mode = None
|
|
|
|
|
|
- # give warnings for too large/small images
|
|
|
- h, w = img.shape[0:2]
|
|
|
- if max(h, w) > 1000 and args.netscale == 4:
|
|
|
- import warnings
|
|
|
- warnings.warn('The input image is large, try X2 model for better performance.')
|
|
|
- if max(h, w) < 500 and args.netscale == 2:
|
|
|
- import warnings
|
|
|
- warnings.warn('The input image is small, try X4 model for better performance.')
|
|
|
-
|
|
|
try:
|
|
|
if args.face_enhance:
|
|
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|