Browse Source

add feedback of anime models

Xintao 3 years ago
parent
commit
8beb7ed17d
2 changed files with 33 additions and 22 deletions
  1. 24 22
      README.md
  2. 9 0
      feedback.md

+ 24 - 22
README.md

@@ -11,6 +11,8 @@
 1. [Colab Demo](https://colab.research.google.com/drive/1k2Zod6kSHEvraybHl50Lys0LerhyTMCo?usp=sharing) for Real-ESRGAN <a href="https://colab.research.google.com/drive/1k2Zod6kSHEvraybHl50Lys0LerhyTMCo?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>.
 2. Portable [Windows](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-windows.zip) / [Linux](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-ubuntu.zip) / [MacOS](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/realesrgan-ncnn-vulkan-20210901-macos.zip) **executable files for Intel/AMD/Nvidia GPU**. You can find more information [here](#Portable-executable-files). The ncnn implementation is in [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan).
 
+感谢大家的关注和使用:-) 关于动漫插画的模型,目前还有很多问题,最主要的是 1. 视频处理不了; 2. 景深虚化有问题; 3. 不可以调节, 效果过了; 4. 把原来的风格改变了。大家都提供了非常好的反馈,谢谢。我会逐步整理这些反馈,更新在 [这里](feedback.md)。希望不久之后,有新的模型可以发布 :grin:
+
 Real-ESRGAN aims at developing **Practical Algorithms for General Image Restoration**.<br>
 We extend the powerful ESRGAN to a practical restoration application (namely, Real-ESRGAN), which is trained with pure synthetic data.
 
@@ -92,6 +94,28 @@ We have provided three models:
 
 You can use the `-n` argument for other models, for example, `./realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n realesrnet-x4plus`
 
+### Usage of executable files
+
+1. Please refer to [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan#computer-usages) for more details.
+1. Note that it does not support all the functions (such as `outscale`) as the python script `inference_realesrgan.py`.
+
+```console
+Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...
+
+  -h                   show this help
+  -v                   verbose output
+  -i input-path        input image path (jpg/png/webp) or directory
+  -o output-path       output image path (jpg/png/webp) or directory
+  -s scale             upscale ratio (4, default=4)
+  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
+  -m model-path        folder path to pre-trained models(default=models)
+  -n model-name        model name (default=realesrgan-x4plus, can be realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
+  -g gpu-id            gpu device to use (default=0) can be 0,1,2 for multi-gpu
+  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
+  -x                   enable tta mode
+  -f format            output image format (jpg/png/webp, default=ext/png)
+```
+
 Note that it may introduce block inconsistency (and also generate slightly different results from the PyTorch implementation), because this executable file first crops the input image into several tiles, and then processes them separately, finally stitches together.
 
 This executable file is based on the wonderful [Tencent/ncnn](https://github.com/Tencent/ncnn) and [realsr-ncnn-vulkan](https://github.com/nihui/realsr-ncnn-vulkan) by [nihui](https://github.com/nihui).
@@ -183,28 +207,6 @@ A common command: python inference_realesrgan.py --model_path experiments/pretra
   --ext                Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
 ```
 
-### Usage of executable files
-
-1. Please refer to [Real-ESRGAN-ncnn-vulkan](https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan#computer-usages) for more details.
-1. Note that it does not support all the functions (such as `outscale`) as the python script `inference_realesrgan.py`.
-
-```console
-Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...
-
-  -h                   show this help
-  -v                   verbose output
-  -i input-path        input image path (jpg/png/webp) or directory
-  -o output-path       output image path (jpg/png/webp) or directory
-  -s scale             upscale ratio (4, default=4)
-  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
-  -m model-path        folder path to pre-trained models(default=models)
-  -n model-name        model name (default=realesrgan-x4plus, can be realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
-  -g gpu-id            gpu device to use (default=0) can be 0,1,2 for multi-gpu
-  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
-  -x                   enable tta mode
-  -f format            output image format (jpg/png/webp, default=ext/png)
-```
-
 ## :european_castle: Model Zoo
 
 - [RealESRGAN_x4plus](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth): X4 model for general images

+ 9 - 0
feedback.md

@@ -0,0 +1,9 @@
+# Feedback 反馈
+
+## 动漫插画模型
+
+1. 视频处理不了: 目前的模型,不是针对视频的,所以视频效果很很不好。我们在探究针对视频的模型了
+1. 景深虚化有问题: 现在的模型把一些景深 和 特意的虚化 都复原了,感觉不好。这个后面我们会考虑把这个信息结合进入。一个简单的做法是识别景深和虚化,然后作为条件告诉神经网络,哪些地方复原强一些,哪些地方复原要弱一些
+1. 不可以调节: 像 Waifu2X 可以调节。可以根据自己的喜好,做调整,但是 Real-ESRGAN-anime 并不可以。导致有些恢复效果过了
+1. 把原来的风格改变了: 不同的动漫插画都有自己的风格,现在的 Real-ESRGAN-anime 倾向于恢复成一种风格(这是受到训练数据集影响的)。风格是动漫很重要的一个要素,所以要尽可能保持
+1. 模型太大: 目前的模型处理太慢,能够更快。这个我们有相关的工作在探究,希望能够尽快有结果,并应用到 Real-ESRGAN 这一系列的模型上