|
@@ -4,159 +4,235 @@ import glob
|
|
|
import mimetypes
|
|
|
import numpy as np
|
|
|
import os
|
|
|
-import queue
|
|
|
import shutil
|
|
|
+import subprocess
|
|
|
import torch
|
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
|
-from basicsr.utils.logger import AvgTimer
|
|
|
+from os import path as osp
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
-from realesrgan import IOConsumer, PrefetchReader, RealESRGANer
|
|
|
+from realesrgan import RealESRGANer
|
|
|
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
|
|
|
|
|
+try:
|
|
|
+ import ffmpeg
|
|
|
+except ImportError:
|
|
|
+ import pip
|
|
|
+ pip.main(['install', '--user', 'ffmpeg-python'])
|
|
|
+ import ffmpeg
|
|
|
+
|
|
|
+
|
|
|
+def get_video_meta_info(video_path):
|
|
|
+ ret = {}
|
|
|
+ probe = ffmpeg.probe(video_path)
|
|
|
+ video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
|
|
+ has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])
|
|
|
+ ret['width'] = video_streams[0]['width']
|
|
|
+ ret['height'] = video_streams[0]['height']
|
|
|
+ ret['fps'] = eval(video_streams[0]['avg_frame_rate'])
|
|
|
+ ret['audio'] = ffmpeg.input(video_path).audio if has_audio else None
|
|
|
+ ret['nb_frames'] = int(video_streams[0]['nb_frames'])
|
|
|
+ return ret
|
|
|
+
|
|
|
+
|
|
|
+def get_sub_video(args, num_process, process_idx):
|
|
|
+ if num_process == 1:
|
|
|
+ return args.input
|
|
|
+ meta = get_video_meta_info(args.input)
|
|
|
+ duration = int(meta['nb_frames'] / meta['fps'])
|
|
|
+ part_time = duration // num_process
|
|
|
+ print(f'duration: {duration}, part_time: {part_time}')
|
|
|
+ os.makedirs(osp.join(args.output, f'{args.video_name}_inp_tmp_videos'), exist_ok=True)
|
|
|
+ out_path = osp.join(args.output, f'{args.video_name}_inp_tmp_videos', f'{process_idx:03d}.mp4')
|
|
|
+ cmd = [
|
|
|
+ args.ffmpeg_bin, f'-i {args.input}', '-ss', f'{part_time * process_idx}',
|
|
|
+ f'-to {part_time * (process_idx + 1)}' if process_idx != num_process - 1 else '', '-async 1', out_path, '-y'
|
|
|
+ ]
|
|
|
+ print(' '.join(cmd))
|
|
|
+ subprocess.call(' '.join(cmd), shell=True)
|
|
|
+ return out_path
|
|
|
+
|
|
|
+
|
|
|
+class Reader:
|
|
|
+
|
|
|
+ def __init__(self, args, total_workers=1, worker_idx=0):
|
|
|
+ self.args = args
|
|
|
+ input_type = mimetypes.guess_type(args.input)[0]
|
|
|
+ self.input_type = 'folder' if input_type is None else input_type
|
|
|
+ self.paths = [] # for image&folder type
|
|
|
+ self.audio = None
|
|
|
+ self.input_fps = None
|
|
|
+ if self.input_type.startswith('video'):
|
|
|
+ video_path = get_sub_video(args, total_workers, worker_idx)
|
|
|
+ self.stream_reader = (
|
|
|
+ ffmpeg.input(video_path).output('pipe:', format='rawvideo', pix_fmt='bgr24',
|
|
|
+ loglevel='error').run_async(
|
|
|
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+ meta = get_video_meta_info(video_path)
|
|
|
+ self.width = meta['width']
|
|
|
+ self.height = meta['height']
|
|
|
+ self.input_fps = meta['fps']
|
|
|
+ self.audio = meta['audio']
|
|
|
+ self.nb_frames = meta['nb_frames']
|
|
|
|
|
|
-def get_frames(args, extract_frames=False):
|
|
|
- # input can be a video file / a folder of frames / an image
|
|
|
- is_video = False
|
|
|
- if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file
|
|
|
- is_video = True
|
|
|
- video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
- if extract_frames:
|
|
|
- frame_folder = os.path.join('tmp_frames', video_name)
|
|
|
- os.makedirs(frame_folder, exist_ok=True)
|
|
|
- # use ffmpeg to extract frames
|
|
|
- os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png')
|
|
|
- # get image path list
|
|
|
- paths = sorted(glob.glob(os.path.join(frame_folder, '*')))
|
|
|
else:
|
|
|
- paths = []
|
|
|
- # get input video fps
|
|
|
- if args.fps is None:
|
|
|
- import ffmpeg
|
|
|
- probe = ffmpeg.probe(args.input)
|
|
|
- video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
|
|
- args.fps = eval(video_streams[0]['avg_frame_rate'])
|
|
|
- elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file
|
|
|
- paths = [args.input]
|
|
|
- else:
|
|
|
- paths = sorted(glob.glob(os.path.join(args.input, '*')))
|
|
|
- assert len(paths) > 0, 'the input folder is empty'
|
|
|
-
|
|
|
- if args.fps is None:
|
|
|
- args.fps = 24
|
|
|
-
|
|
|
- return is_video, paths
|
|
|
-
|
|
|
-
|
|
|
-def inference_stream(args, upsampler, face_enhancer):
|
|
|
- try:
|
|
|
- import ffmpeg
|
|
|
- except ImportError:
|
|
|
- import pip
|
|
|
- pip.main(['install', '--user', 'ffmpeg-python'])
|
|
|
- import ffmpeg
|
|
|
-
|
|
|
- is_video, paths = get_frames(args, extract_frames=False)
|
|
|
- video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
- video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
|
|
|
-
|
|
|
- # decoder
|
|
|
- if is_video:
|
|
|
- # get height and width
|
|
|
- probe = ffmpeg.probe(args.input)
|
|
|
- video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
|
|
- width = video_streams[0]['width']
|
|
|
- height = video_streams[0]['height']
|
|
|
-
|
|
|
- # set up frame decoder
|
|
|
- decoder = (
|
|
|
- ffmpeg.input(args.input).output('pipe:', format='rawvideo', pix_fmt='rgb24', loglevel='warning').run_async(
|
|
|
- pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+ if self.input_type.startswith('image'):
|
|
|
+ self.paths = [args.input]
|
|
|
+ else:
|
|
|
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
|
|
|
+ tot_frames = len(paths)
|
|
|
+ num_frame_per_worker = tot_frames // total_workers + (1 if tot_frames % total_workers else 0)
|
|
|
+ self.paths = paths[num_frame_per_worker * worker_idx:num_frame_per_worker * (worker_idx + 1)]
|
|
|
+
|
|
|
+ self.nb_frames = len(self.paths)
|
|
|
+ assert self.nb_frames > 0, 'empty folder'
|
|
|
+ from PIL import Image
|
|
|
+ tmp_img = Image.open(self.paths[0])
|
|
|
+ self.width, self.height = tmp_img.size
|
|
|
+ self.idx = 0
|
|
|
+
|
|
|
+ def get_resolution(self):
|
|
|
+ return self.height, self.width
|
|
|
+
|
|
|
+ def get_fps(self):
|
|
|
+ if self.args.fps is not None:
|
|
|
+ return self.args.fps
|
|
|
+ elif self.input_fps is not None:
|
|
|
+ return self.input_fps
|
|
|
+ return 24
|
|
|
+
|
|
|
+ def get_audio(self):
|
|
|
+ return self.audio
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return self.nb_frames
|
|
|
+
|
|
|
+ def get_frame_from_stream(self):
|
|
|
+ img_bytes = self.stream_reader.stdout.read(self.width * self.height * 3) # 3 bytes for one pixel
|
|
|
+ if not img_bytes:
|
|
|
+ return None
|
|
|
+ img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3])
|
|
|
+ return img
|
|
|
+
|
|
|
+ def get_frame_from_list(self):
|
|
|
+ if self.idx >= self.nb_frames:
|
|
|
+ return None
|
|
|
+ img = cv2.imread(self.paths[self.idx])
|
|
|
+ self.idx += 1
|
|
|
+ return img
|
|
|
+
|
|
|
+ def get_frame(self):
|
|
|
+ if self.input_type.startswith('video'):
|
|
|
+ return self.get_frame_from_stream()
|
|
|
+ else:
|
|
|
+ return self.get_frame_from_list()
|
|
|
+
|
|
|
+ def close(self):
|
|
|
+ if self.input_type.startswith('video'):
|
|
|
+ self.stream_reader.stdin.close()
|
|
|
+ self.stream_reader.wait()
|
|
|
+
|
|
|
+
|
|
|
+class Writer:
|
|
|
+
|
|
|
+ def __init__(self, args, audio, height, width, video_save_path, fps):
|
|
|
+ out_width, out_height = int(width * args.outscale), int(height * args.outscale)
|
|
|
+ if out_height > 2160:
|
|
|
+ print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
|
|
|
+ 'We highly recommend to decrease the outscale(aka, -s).')
|
|
|
+
|
|
|
+ if audio is not None:
|
|
|
+ self.stream_writer = (
|
|
|
+ ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}',
|
|
|
+ framerate=fps).output(
|
|
|
+ audio,
|
|
|
+ video_save_path,
|
|
|
+ pix_fmt='yuv420p',
|
|
|
+ vcodec='libx264',
|
|
|
+ loglevel='error',
|
|
|
+ acodec='copy').overwrite_output().run_async(
|
|
|
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+ else:
|
|
|
+ self.stream_writer = (
|
|
|
+ ffmpeg.input('pipe:', format='rawvideo', pix_fmt='bgr24', s=f'{out_width}x{out_height}',
|
|
|
+ framerate=fps).output(
|
|
|
+ video_save_path, pix_fmt='yuv420p', vcodec='libx264',
|
|
|
+ loglevel='error').overwrite_output().run_async(
|
|
|
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+
|
|
|
+ def write_frame(self, frame):
|
|
|
+ frame = frame.astype(np.uint8).tobytes()
|
|
|
+ self.stream_writer.stdin.write(frame)
|
|
|
+
|
|
|
+ def close(self):
|
|
|
+ self.stream_writer.stdin.close()
|
|
|
+ self.stream_writer.wait()
|
|
|
+
|
|
|
+
|
|
|
+def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0):
|
|
|
+ # ---------------------- determine models according to model names ---------------------- #
|
|
|
+ args.model_name = args.model_name.split('.pth')[0]
|
|
|
+ if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
|
+ netscale = 4
|
|
|
+ elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
|
+ netscale = 4
|
|
|
+ elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
|
+ netscale = 2
|
|
|
+ elif args.model_name in ['realesr-animevideov3']: # x4 VGG-style model (XS size)
|
|
|
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
|
|
|
+ netscale = 4
|
|
|
else:
|
|
|
- from PIL import Image
|
|
|
- tmp_img = Image.open(paths[0])
|
|
|
- width, height = tmp_img.size
|
|
|
- idx = 0
|
|
|
-
|
|
|
- out_width, out_height = int(width * args.outscale), int(height * args.outscale)
|
|
|
- if out_height > 2160:
|
|
|
- print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
|
|
|
- 'We highly recommend to decrease the outscale(aka, -s).')
|
|
|
- # encoder
|
|
|
- if is_video:
|
|
|
- audio = ffmpeg.input(args.input).audio
|
|
|
- encoder = (
|
|
|
- ffmpeg.input(
|
|
|
- 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}', framerate=args.fps).output(
|
|
|
- audio, video_save_path, pix_fmt='yuv420p', vcodec='libx264', loglevel='info',
|
|
|
- acodec='copy').overwrite_output().run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+ raise NotImplementedError
|
|
|
+
|
|
|
+ # ---------------------- determine model paths ---------------------- #
|
|
|
+ model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth')
|
|
|
+ if not os.path.isfile(model_path):
|
|
|
+ model_path = os.path.join('realesrgan/weights', args.model_name + '.pth')
|
|
|
+ if not os.path.isfile(model_path):
|
|
|
+ raise ValueError(f'Model {args.model_name} does not exist.')
|
|
|
+
|
|
|
+ # restorer
|
|
|
+ upsampler = RealESRGANer(
|
|
|
+ scale=netscale,
|
|
|
+ model_path=model_path,
|
|
|
+ model=model,
|
|
|
+ tile=args.tile,
|
|
|
+ tile_pad=args.tile_pad,
|
|
|
+ pre_pad=args.pre_pad,
|
|
|
+ half=not args.fp32,
|
|
|
+ device=device,
|
|
|
+ )
|
|
|
+
|
|
|
+ if 'anime' in args.model_name and args.face_enhance:
|
|
|
+ print('face_enhance is not supported in anime models, we turned this option off for you. '
|
|
|
+ 'if you insist on turning it on, please manually comment the relevant lines of code.')
|
|
|
+ args.face_enhance = False
|
|
|
+
|
|
|
+ if args.face_enhance: # Use GFPGAN for face enhancement
|
|
|
+ from gfpgan import GFPGANer
|
|
|
+ face_enhancer = GFPGANer(
|
|
|
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
|
|
|
+ upscale=args.outscale,
|
|
|
+ arch='clean',
|
|
|
+ channel_multiplier=2,
|
|
|
+ bg_upsampler=upsampler) # TODO support custom device
|
|
|
else:
|
|
|
- encoder = (
|
|
|
- ffmpeg.input(
|
|
|
- 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}',
|
|
|
- framerate=args.fps).output(video_save_path, pix_fmt='yuv420p', vcodec='libx264',
|
|
|
- loglevel='info').overwrite_output().run_async(
|
|
|
- pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+ face_enhancer = None
|
|
|
|
|
|
- while True:
|
|
|
- if is_video:
|
|
|
- img_bytes = decoder.stdout.read(width * height * 3) # 3 bytes for one pixel
|
|
|
- if not img_bytes:
|
|
|
- break
|
|
|
- img = np.frombuffer(img_bytes, np.uint8).reshape([height, width, 3])
|
|
|
- else:
|
|
|
- if idx >= len(paths):
|
|
|
- break
|
|
|
- img = cv2.imread(paths[idx])
|
|
|
- idx += 1
|
|
|
+ reader = Reader(args, total_workers, worker_idx)
|
|
|
+ audio = reader.get_audio()
|
|
|
+ height, width = reader.get_resolution()
|
|
|
+ fps = reader.get_fps()
|
|
|
+ writer = Writer(args, audio, height, width, video_save_path, fps)
|
|
|
|
|
|
- try:
|
|
|
- if args.face_enhance:
|
|
|
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
- else:
|
|
|
- output, _ = upsampler.enhance(img, outscale=args.outscale)
|
|
|
- except RuntimeError as error:
|
|
|
- print('Error', error)
|
|
|
- print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
|
|
- else:
|
|
|
- output = output.astype(np.uint8).tobytes()
|
|
|
- encoder.stdin.write(output)
|
|
|
-
|
|
|
- torch.cuda.synchronize()
|
|
|
-
|
|
|
- if is_video:
|
|
|
- decoder.stdin.close()
|
|
|
- decoder.wait()
|
|
|
- encoder.stdin.close()
|
|
|
- encoder.wait()
|
|
|
-
|
|
|
-
|
|
|
-def inference_frames(args, upsampler, face_enhancer):
|
|
|
- is_video, paths = get_frames(args, extract_frames=True)
|
|
|
- video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
-
|
|
|
- # for saving restored frames
|
|
|
- save_frame_folder = os.path.join(args.output, video_name, 'frames_tmpout')
|
|
|
- os.makedirs(save_frame_folder, exist_ok=True)
|
|
|
-
|
|
|
- timer = AvgTimer()
|
|
|
- timer.start()
|
|
|
- pbar = tqdm(total=len(paths), unit='frame', desc='inference')
|
|
|
- # set up prefetch reader
|
|
|
- reader = PrefetchReader(paths, num_prefetch_queue=4)
|
|
|
- reader.start()
|
|
|
-
|
|
|
- que = queue.Queue()
|
|
|
- consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)]
|
|
|
- for consumer in consumers:
|
|
|
- consumer.start()
|
|
|
-
|
|
|
- for idx, (path, img) in enumerate(zip(paths, reader)):
|
|
|
- imgname, extension = os.path.splitext(os.path.basename(path))
|
|
|
- if len(img.shape) == 3 and img.shape[2] == 4:
|
|
|
- img_mode = 'RGBA'
|
|
|
- else:
|
|
|
- img_mode = None
|
|
|
+ pbar = tqdm(total=len(reader), unit='frame', desc='inference')
|
|
|
+ while True:
|
|
|
+ img = reader.get_frame()
|
|
|
+ if img is None:
|
|
|
+ break
|
|
|
|
|
|
try:
|
|
|
if args.face_enhance:
|
|
@@ -166,39 +242,61 @@ def inference_frames(args, upsampler, face_enhancer):
|
|
|
except RuntimeError as error:
|
|
|
print('Error', error)
|
|
|
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
|
|
-
|
|
|
else:
|
|
|
- if args.ext == 'auto':
|
|
|
- extension = extension[1:]
|
|
|
- else:
|
|
|
- extension = args.ext
|
|
|
- if img_mode == 'RGBA': # RGBA images should be saved in png format
|
|
|
- extension = 'png'
|
|
|
- save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}')
|
|
|
-
|
|
|
- que.put({'output': output, 'save_path': save_path})
|
|
|
+ writer.write_frame(output)
|
|
|
|
|
|
+ torch.cuda.synchronize(device)
|
|
|
pbar.update(1)
|
|
|
- torch.cuda.synchronize()
|
|
|
- timer.record()
|
|
|
- avg_fps = 1. / (timer.get_avg_time() + 1e-7)
|
|
|
- pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}')
|
|
|
-
|
|
|
- for _ in range(args.consumer):
|
|
|
- que.put('quit')
|
|
|
- for consumer in consumers:
|
|
|
- consumer.join()
|
|
|
- pbar.close()
|
|
|
-
|
|
|
- # merge frames to video
|
|
|
- video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
|
|
|
- os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}'
|
|
|
- f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
|
|
|
- # delete tmp file
|
|
|
- shutil.rmtree(save_frame_folder)
|
|
|
- frame_folder = os.path.join('tmp_frames', video_name)
|
|
|
- if os.path.isdir(frame_folder):
|
|
|
- shutil.rmtree(frame_folder)
|
|
|
+
|
|
|
+ reader.close()
|
|
|
+ writer.close()
|
|
|
+
|
|
|
+
|
|
|
+def run(args):
|
|
|
+ args.video_name = osp.splitext(os.path.basename(args.input))[0]
|
|
|
+ video_save_path = osp.join(args.output, f'{args.video_name}_{args.suffix}.mp4')
|
|
|
+
|
|
|
+ if args.extract_frame_first:
|
|
|
+ tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames')
|
|
|
+ os.makedirs(tmp_frames_folder, exist_ok=True)
|
|
|
+ os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png')
|
|
|
+ args.input = tmp_frames_folder
|
|
|
+
|
|
|
+ num_gpus = torch.cuda.device_count()
|
|
|
+ num_process = num_gpus * args.num_process_per_gpu
|
|
|
+ if num_process == 1:
|
|
|
+ inference_video(args, video_save_path)
|
|
|
+ return
|
|
|
+
|
|
|
+ ctx = torch.multiprocessing.get_context('spawn')
|
|
|
+ pool = ctx.Pool(num_process)
|
|
|
+ os.makedirs(osp.join(args.output, f'{args.video_name}_out_tmp_videos'), exist_ok=True)
|
|
|
+ pbar = tqdm(total=num_process, unit='sub_video', desc='inference')
|
|
|
+ for i in range(num_process):
|
|
|
+ sub_video_save_path = osp.join(args.output, f'{args.video_name}_out_tmp_videos', f'{i:03d}.mp4')
|
|
|
+ pool.apply_async(
|
|
|
+ inference_video,
|
|
|
+ args=(args, sub_video_save_path, torch.device(i % num_gpus), num_process, i),
|
|
|
+ callback=lambda arg: pbar.update(1))
|
|
|
+ pool.close()
|
|
|
+ pool.join()
|
|
|
+
|
|
|
+ # combine sub videos
|
|
|
+ # prepare vidlist.txt
|
|
|
+ with open(f'{args.output}/{args.video_name}_vidlist.txt', 'w') as f:
|
|
|
+ for i in range(num_process):
|
|
|
+ f.write(f'file \'{args.video_name}_out_tmp_videos/{i:03d}.mp4\'\n')
|
|
|
+
|
|
|
+ cmd = [
|
|
|
+ args.ffmpeg_bin, '-f', 'concat', '-safe', '0', '-i', f'{args.output}/{args.video_name}_vidlist.txt', '-c',
|
|
|
+ 'copy', f'{video_save_path}'
|
|
|
+ ]
|
|
|
+ print(' '.join(cmd))
|
|
|
+ subprocess.call(cmd)
|
|
|
+ shutil.rmtree(osp.join(args.output, f'{args.video_name}_out_tmp_videos'))
|
|
|
+ if osp.exists(osp.join(args.output, f'{args.video_name}_inp_tmp_videos')):
|
|
|
+ shutil.rmtree(osp.join(args.output, f'{args.video_name}_inp_tmp_videos'))
|
|
|
+ os.remove(f'{args.output}/{args.video_name}_vidlist.txt')
|
|
|
|
|
|
|
|
|
def main():
|
|
@@ -226,9 +324,9 @@ def main():
|
|
|
parser.add_argument(
|
|
|
'--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
|
|
|
parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
|
|
|
- parser.add_argument('--consumer', type=int, default=4, help='Number of IO consumers')
|
|
|
- parser.add_argument('--stream', action='store_true')
|
|
|
parser.add_argument('--ffmpeg_bin', type=str, default='ffmpeg', help='The path to ffmpeg')
|
|
|
+ parser.add_argument('--extract_frame_first', action='store_true')
|
|
|
+ parser.add_argument('--num_process_per_gpu', type=int, default=1)
|
|
|
|
|
|
parser.add_argument(
|
|
|
'--alpha_upsampler',
|
|
@@ -243,61 +341,21 @@ def main():
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
args.input = args.input.rstrip('/').rstrip('\\')
|
|
|
+ os.makedirs(args.output, exist_ok=True)
|
|
|
|
|
|
- # ---------------------- determine models according to model names ---------------------- #
|
|
|
- args.model_name = args.model_name.split('.pth')[0]
|
|
|
- if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
|
|
|
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
|
- netscale = 4
|
|
|
- elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
|
|
|
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
|
- netscale = 4
|
|
|
- elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
|
|
|
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
|
- netscale = 2
|
|
|
- elif args.model_name in ['realesr-animevideov3']: # x4 VGG-style model (XS size)
|
|
|
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
|
|
|
- netscale = 4
|
|
|
-
|
|
|
- # ---------------------- determine model paths ---------------------- #
|
|
|
- model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth')
|
|
|
- if not os.path.isfile(model_path):
|
|
|
- model_path = os.path.join('realesrgan/weights', args.model_name + '.pth')
|
|
|
- if not os.path.isfile(model_path):
|
|
|
- raise ValueError(f'Model {args.model_name} does not exist.')
|
|
|
-
|
|
|
- # restorer
|
|
|
- upsampler = RealESRGANer(
|
|
|
- scale=netscale,
|
|
|
- model_path=model_path,
|
|
|
- model=model,
|
|
|
- tile=args.tile,
|
|
|
- tile_pad=args.tile_pad,
|
|
|
- pre_pad=args.pre_pad,
|
|
|
- half=not args.fp32)
|
|
|
-
|
|
|
- if 'anime' in args.model_name and args.face_enhance:
|
|
|
- print('face_enhance is not supported in anime models, we turned this option off for you. '
|
|
|
- 'if you insist on turning it on, please manually comment the relevant lines of code.')
|
|
|
- args.face_enhance = False
|
|
|
-
|
|
|
- if args.face_enhance: # Use GFPGAN for face enhancement
|
|
|
- from gfpgan import GFPGANer
|
|
|
- face_enhancer = GFPGANer(
|
|
|
- model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
|
|
|
- upscale=args.outscale,
|
|
|
- arch='clean',
|
|
|
- channel_multiplier=2,
|
|
|
- bg_upsampler=upsampler)
|
|
|
+ if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type(args.input)[0].startswith('video'):
|
|
|
+ is_video = True
|
|
|
else:
|
|
|
- face_enhancer = None
|
|
|
+ is_video = False
|
|
|
|
|
|
- os.makedirs(args.output, exist_ok=True)
|
|
|
+ if args.extract_frame_first and not is_video:
|
|
|
+ args.extract_frame_first = False
|
|
|
|
|
|
- if args.stream:
|
|
|
- inference_stream(args, upsampler, face_enhancer)
|
|
|
- else:
|
|
|
- inference_frames(args, upsampler, face_enhancer)
|
|
|
+ run(args)
|
|
|
+
|
|
|
+ if args.extract_frame_first:
|
|
|
+ tmp_frames_folder = osp.join(args.output, f'{args.video_name}_inp_tmp_frames')
|
|
|
+ shutil.rmtree(tmp_frames_folder)
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|