|
@@ -1,6 +1,8 @@
|
|
|
import argparse
|
|
|
+import cv2
|
|
|
import glob
|
|
|
import mimetypes
|
|
|
+import numpy as np
|
|
|
import os
|
|
|
import queue
|
|
|
import shutil
|
|
@@ -13,6 +15,192 @@ from realesrgan import IOConsumer, PrefetchReader, RealESRGANer
|
|
|
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
|
|
|
|
|
|
|
|
+def get_frames(args, extract_frames=False):
|
|
|
+ # input can be a video file / a folder of frames / an image
|
|
|
+ is_video = False
|
|
|
+ if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file
|
|
|
+ is_video = True
|
|
|
+ video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
+ if extract_frames:
|
|
|
+ frame_folder = os.path.join('tmp_frames', video_name)
|
|
|
+ os.makedirs(frame_folder, exist_ok=True)
|
|
|
+ # use ffmpeg to extract frames
|
|
|
+ os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png')
|
|
|
+ # get image path list
|
|
|
+ paths = sorted(glob.glob(os.path.join(frame_folder, '*')))
|
|
|
+ else:
|
|
|
+ paths = []
|
|
|
+ # get input video fps
|
|
|
+ if args.fps is None:
|
|
|
+ import ffmpeg
|
|
|
+ probe = ffmpeg.probe(args.input)
|
|
|
+ video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
|
|
+ args.fps = eval(video_streams[0]['avg_frame_rate'])
|
|
|
+ elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file
|
|
|
+ paths = [args.input]
|
|
|
+ else:
|
|
|
+ paths = sorted(glob.glob(os.path.join(args.input, '*')))
|
|
|
+ assert len(paths) > 0, 'the input folder is empty'
|
|
|
+
|
|
|
+ if args.fps is None:
|
|
|
+ args.fps = 24
|
|
|
+
|
|
|
+ return is_video, paths
|
|
|
+
|
|
|
+
|
|
|
+def inference_stream(args, upsampler, face_enhancer):
|
|
|
+ try:
|
|
|
+ import ffmpeg
|
|
|
+ except ImportError:
|
|
|
+ import pip
|
|
|
+ pip.main(['install', '--user', 'ffmpeg-python'])
|
|
|
+ import ffmpeg
|
|
|
+
|
|
|
+ is_video, paths = get_frames(args, extract_frames=False)
|
|
|
+ video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
+ video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
|
|
|
+
|
|
|
+ # decoder
|
|
|
+ if is_video:
|
|
|
+ # get height and width
|
|
|
+ probe = ffmpeg.probe(args.input)
|
|
|
+ video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
|
|
+ width = video_streams[0]['width']
|
|
|
+ height = video_streams[0]['height']
|
|
|
+
|
|
|
+ # set up frame decoder
|
|
|
+ decoder = (
|
|
|
+ ffmpeg.input(args.input).output('pipe:', format='rawvideo', pix_fmt='rgb24', loglevel='warning').run_async(
|
|
|
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+ else:
|
|
|
+ from PIL import Image
|
|
|
+ tmp_img = Image.open(paths[0])
|
|
|
+ width, height = tmp_img.size
|
|
|
+ idx = 0
|
|
|
+
|
|
|
+ out_width, out_height = int(width * args.outscale), int(height * args.outscale)
|
|
|
+ if out_height > 2160:
|
|
|
+ print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
|
|
|
+ 'We highly recommend to decrease the outscale(aka, -s).')
|
|
|
+ # encoder
|
|
|
+ if is_video:
|
|
|
+ audio = ffmpeg.input(args.input).audio
|
|
|
+ encoder = (
|
|
|
+ ffmpeg.input(
|
|
|
+ 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}', framerate=args.fps).output(
|
|
|
+ audio, video_save_path, pix_fmt='yuv420p', vcodec='libx264', loglevel='info',
|
|
|
+ acodec='copy').overwrite_output().run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+ else:
|
|
|
+ encoder = (
|
|
|
+ ffmpeg.input(
|
|
|
+ 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}',
|
|
|
+ framerate=args.fps).output(video_save_path, pix_fmt='yuv420p', vcodec='libx264',
|
|
|
+ loglevel='info').overwrite_output().run_async(
|
|
|
+ pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
|
|
|
+
|
|
|
+ while True:
|
|
|
+ if is_video:
|
|
|
+ img_bytes = decoder.stdout.read(width * height * 3) # 3 bytes for one pixel
|
|
|
+ if not img_bytes:
|
|
|
+ break
|
|
|
+ img = np.frombuffer(img_bytes, np.uint8).reshape([height, width, 3])
|
|
|
+ else:
|
|
|
+ if idx >= len(paths):
|
|
|
+ break
|
|
|
+ img = cv2.imread(paths[idx])
|
|
|
+ idx += 1
|
|
|
+
|
|
|
+ try:
|
|
|
+ if args.face_enhance:
|
|
|
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
+ else:
|
|
|
+ output, _ = upsampler.enhance(img, outscale=args.outscale)
|
|
|
+ except RuntimeError as error:
|
|
|
+ print('Error', error)
|
|
|
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
|
|
+ else:
|
|
|
+ output = output.astype(np.uint8).tobytes()
|
|
|
+ encoder.stdin.write(output)
|
|
|
+
|
|
|
+ torch.cuda.synchronize()
|
|
|
+
|
|
|
+ if is_video:
|
|
|
+ decoder.stdin.close()
|
|
|
+ decoder.wait()
|
|
|
+ encoder.stdin.close()
|
|
|
+ encoder.wait()
|
|
|
+
|
|
|
+
|
|
|
+def inference_frames(args, upsampler, face_enhancer):
|
|
|
+ is_video, paths = get_frames(args, extract_frames=True)
|
|
|
+ video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
+
|
|
|
+ # for saving restored frames
|
|
|
+ save_frame_folder = os.path.join(args.output, video_name, 'frames_tmpout')
|
|
|
+ os.makedirs(save_frame_folder, exist_ok=True)
|
|
|
+
|
|
|
+ timer = AvgTimer()
|
|
|
+ timer.start()
|
|
|
+ pbar = tqdm(total=len(paths), unit='frame', desc='inference')
|
|
|
+ # set up prefetch reader
|
|
|
+ reader = PrefetchReader(paths, num_prefetch_queue=4)
|
|
|
+ reader.start()
|
|
|
+
|
|
|
+ que = queue.Queue()
|
|
|
+ consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)]
|
|
|
+ for consumer in consumers:
|
|
|
+ consumer.start()
|
|
|
+
|
|
|
+ for idx, (path, img) in enumerate(zip(paths, reader)):
|
|
|
+ imgname, extension = os.path.splitext(os.path.basename(path))
|
|
|
+ if len(img.shape) == 3 and img.shape[2] == 4:
|
|
|
+ img_mode = 'RGBA'
|
|
|
+ else:
|
|
|
+ img_mode = None
|
|
|
+
|
|
|
+ try:
|
|
|
+ if args.face_enhance:
|
|
|
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
+ else:
|
|
|
+ output, _ = upsampler.enhance(img, outscale=args.outscale)
|
|
|
+ except RuntimeError as error:
|
|
|
+ print('Error', error)
|
|
|
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
|
|
+
|
|
|
+ else:
|
|
|
+ if args.ext == 'auto':
|
|
|
+ extension = extension[1:]
|
|
|
+ else:
|
|
|
+ extension = args.ext
|
|
|
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
|
|
|
+ extension = 'png'
|
|
|
+ save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}')
|
|
|
+
|
|
|
+ que.put({'output': output, 'save_path': save_path})
|
|
|
+
|
|
|
+ pbar.update(1)
|
|
|
+ torch.cuda.synchronize()
|
|
|
+ timer.record()
|
|
|
+ avg_fps = 1. / (timer.get_avg_time() + 1e-7)
|
|
|
+ pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}')
|
|
|
+
|
|
|
+ for _ in range(args.consumer):
|
|
|
+ que.put('quit')
|
|
|
+ for consumer in consumers:
|
|
|
+ consumer.join()
|
|
|
+ pbar.close()
|
|
|
+
|
|
|
+ # merge frames to video
|
|
|
+ video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
|
|
|
+ os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}'
|
|
|
+ f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
|
|
|
+ # delete tmp file
|
|
|
+ shutil.rmtree(save_frame_folder)
|
|
|
+ frame_folder = os.path.join('tmp_frames', video_name)
|
|
|
+ if os.path.isdir(frame_folder):
|
|
|
+ shutil.rmtree(frame_folder)
|
|
|
+
|
|
|
+
|
|
|
def main():
|
|
|
"""Inference demo for Real-ESRGAN.
|
|
|
It mainly for restoring anime videos.
|
|
@@ -39,6 +227,8 @@ def main():
|
|
|
'--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
|
|
|
parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
|
|
|
parser.add_argument('--consumer', type=int, default=4, help='Number of IO consumers')
|
|
|
+ parser.add_argument('--stream', action='store_true')
|
|
|
+ parser.add_argument('--ffmpeg_bin', type=str, default='ffmpeg', help='The path to ffmpeg')
|
|
|
|
|
|
parser.add_argument(
|
|
|
'--alpha_upsampler',
|
|
@@ -52,6 +242,8 @@ def main():
|
|
|
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
+ args.input = args.input.rstrip('/').rstrip('\\')
|
|
|
+
|
|
|
# ---------------------- determine models according to model names ---------------------- #
|
|
|
args.model_name = args.model_name.split('.pth')[0]
|
|
|
if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
|
|
@@ -84,6 +276,11 @@ def main():
|
|
|
pre_pad=args.pre_pad,
|
|
|
half=not args.fp32)
|
|
|
|
|
|
+ if 'anime' in args.model_name and args.face_enhance:
|
|
|
+ print('face_enhance is not supported in anime models, we turned this option off for you. '
|
|
|
+ 'if you insist on turning it on, please manually comment the relevant lines of code.')
|
|
|
+ args.face_enhance = False
|
|
|
+
|
|
|
if args.face_enhance: # Use GFPGAN for face enhancement
|
|
|
from gfpgan import GFPGANer
|
|
|
face_enhancer = GFPGANer(
|
|
@@ -92,93 +289,15 @@ def main():
|
|
|
arch='clean',
|
|
|
channel_multiplier=2,
|
|
|
bg_upsampler=upsampler)
|
|
|
- os.makedirs(args.output, exist_ok=True)
|
|
|
- # for saving restored frames
|
|
|
- save_frame_folder = os.path.join(args.output, 'frames_tmpout')
|
|
|
- os.makedirs(save_frame_folder, exist_ok=True)
|
|
|
-
|
|
|
- # input can be a video file / a folder of frames / an image
|
|
|
- if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file
|
|
|
- video_name = os.path.splitext(os.path.basename(args.input))[0]
|
|
|
- frame_folder = os.path.join('tmp_frames', video_name)
|
|
|
- os.makedirs(frame_folder, exist_ok=True)
|
|
|
- # use ffmpeg to extract frames
|
|
|
- os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png')
|
|
|
- # get image path list
|
|
|
- paths = sorted(glob.glob(os.path.join(frame_folder, '*')))
|
|
|
- # get input video fps
|
|
|
- if args.fps is None:
|
|
|
-
|
|
|
- import ffmpeg
|
|
|
- probe = ffmpeg.probe(args.input)
|
|
|
- video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
|
|
- args.fps = eval(video_streams[0]['avg_frame_rate'])
|
|
|
- elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file
|
|
|
- paths = [args.input]
|
|
|
- video_name = 'video'
|
|
|
else:
|
|
|
- paths = sorted(glob.glob(os.path.join(args.input, '*')))
|
|
|
- video_name = 'video'
|
|
|
+ face_enhancer = None
|
|
|
|
|
|
- timer = AvgTimer()
|
|
|
- timer.start()
|
|
|
- pbar = tqdm(total=len(paths), unit='frame', desc='inference')
|
|
|
- # set up prefetch reader
|
|
|
- reader = PrefetchReader(paths, num_prefetch_queue=4)
|
|
|
- reader.start()
|
|
|
-
|
|
|
- que = queue.Queue()
|
|
|
- consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)]
|
|
|
- for consumer in consumers:
|
|
|
- consumer.start()
|
|
|
-
|
|
|
- for idx, (path, img) in enumerate(zip(paths, reader)):
|
|
|
- imgname, extension = os.path.splitext(os.path.basename(path))
|
|
|
- if len(img.shape) == 3 and img.shape[2] == 4:
|
|
|
- img_mode = 'RGBA'
|
|
|
- else:
|
|
|
- img_mode = None
|
|
|
-
|
|
|
- try:
|
|
|
- if args.face_enhance:
|
|
|
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
- else:
|
|
|
- output, _ = upsampler.enhance(img, outscale=args.outscale)
|
|
|
- except RuntimeError as error:
|
|
|
- print('Error', error)
|
|
|
- print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
|
|
|
-
|
|
|
- else:
|
|
|
- if args.ext == 'auto':
|
|
|
- extension = extension[1:]
|
|
|
- else:
|
|
|
- extension = args.ext
|
|
|
- if img_mode == 'RGBA': # RGBA images should be saved in png format
|
|
|
- extension = 'png'
|
|
|
- save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}')
|
|
|
-
|
|
|
- que.put({'output': output, 'save_path': save_path})
|
|
|
-
|
|
|
- pbar.update(1)
|
|
|
- torch.cuda.synchronize()
|
|
|
- timer.record()
|
|
|
- avg_fps = 1. / (timer.get_avg_time() + 1e-7)
|
|
|
- pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}')
|
|
|
-
|
|
|
- for _ in range(args.consumer):
|
|
|
- que.put('quit')
|
|
|
- for consumer in consumers:
|
|
|
- consumer.join()
|
|
|
- pbar.close()
|
|
|
+ os.makedirs(args.output, exist_ok=True)
|
|
|
|
|
|
- # merge frames to video
|
|
|
- video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
|
|
|
- os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}'
|
|
|
- f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
|
|
|
- # delete tmp file
|
|
|
- shutil.rmtree(save_frame_folder)
|
|
|
- if os.path.isdir(frame_folder):
|
|
|
- shutil.rmtree(frame_folder)
|
|
|
+ if args.stream:
|
|
|
+ inference_stream(args, upsampler, face_enhancer)
|
|
|
+ else:
|
|
|
+ inference_frames(args, upsampler, face_enhancer)
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|