|
@@ -0,0 +1,150 @@
|
|
|
|
+# flake8: noqa
|
|
|
|
+# This file is used for deploying replicate models
|
|
|
|
+# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
|
|
|
|
+# push: cog push r8.im/xinntao/realesrgan
|
|
|
|
+
|
|
|
|
+import os
|
|
|
|
+
|
|
|
|
+os.system('pip install gfpgan')
|
|
|
|
+os.system('python setup.py develop')
|
|
|
|
+
|
|
|
|
+import cv2
|
|
|
|
+import shutil
|
|
|
|
+import tempfile
|
|
|
|
+import torch
|
|
|
|
+from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
|
|
+from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
|
|
|
+
|
|
|
|
+from realesrgan.utils import RealESRGANer
|
|
|
|
+
|
|
|
|
+try:
|
|
|
|
+ from cog import BasePredictor, Input, Path
|
|
|
|
+ from gfpgan import GFPGANer
|
|
|
|
+except Exception:
|
|
|
|
+ print('please install cog and realesrgan package')
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class Predictor(BasePredictor):
|
|
|
|
+
|
|
|
|
+ def setup(self):
|
|
|
|
+ os.makedirs('output', exist_ok=True)
|
|
|
|
+ # download weights
|
|
|
|
+ if not os.path.exists('realesrgan/weights/realesr-general-x4v3.pth'):
|
|
|
|
+ os.system(
|
|
|
|
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./realesrgan/weights'
|
|
|
|
+ )
|
|
|
|
+ if not os.path.exists('realesrgan/weights/GFPGANv1.4.pth'):
|
|
|
|
+ os.system(
|
|
|
|
+ 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./realesrgan/weights'
|
|
|
|
+ )
|
|
|
|
+ if not os.path.exists('realesrgan/weights/RealESRGAN_x4plus.pth'):
|
|
|
|
+ os.system(
|
|
|
|
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./realesrgan/weights'
|
|
|
|
+ )
|
|
|
|
+ if not os.path.exists('realesrgan/weights/RealESRGAN_x4plus_anime_6B.pth'):
|
|
|
|
+ os.system(
|
|
|
|
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./realesrgan/weights'
|
|
|
|
+ )
|
|
|
|
+ if not os.path.exists('realesrgan/weights/realesr-animevideov3.pth'):
|
|
|
|
+ os.system(
|
|
|
|
+ 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./realesrgan/weights'
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ def choose_model(self, scale, version, tile=0):
|
|
|
|
+ half = True if torch.cuda.is_available() else False
|
|
|
|
+ if version == 'General - RealESRGANplus':
|
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
|
|
+ model_path = 'realesrgan/weights/RealESRGAN_x4plus.pth'
|
|
|
|
+ self.upsampler = RealESRGANer(
|
|
|
|
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
|
|
|
|
+ elif version == 'General - v3':
|
|
|
|
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
|
|
|
+ model_path = 'realesrgan/weights/realesr-general-x4v3.pth'
|
|
|
|
+ self.upsampler = RealESRGANer(
|
|
|
|
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
|
|
|
|
+ elif version == 'Anime - anime6B':
|
|
|
|
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
|
|
+ model_path = 'realesrgan/weights/RealESRGAN_x4plus_anime_6B.pth'
|
|
|
|
+ self.upsampler = RealESRGANer(
|
|
|
|
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
|
|
|
|
+ elif version == 'AnimeVideo - v3':
|
|
|
|
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
|
|
|
|
+ model_path = 'realesrgan/weights/realesr-animevideov3.pth'
|
|
|
|
+ self.upsampler = RealESRGANer(
|
|
|
|
+ scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
|
|
|
|
+
|
|
|
|
+ self.face_enhancer = GFPGANer(
|
|
|
|
+ model_path='realesrgan/weights/GFPGANv1.4.pth',
|
|
|
|
+ upscale=scale,
|
|
|
|
+ arch='clean',
|
|
|
|
+ channel_multiplier=2,
|
|
|
|
+ bg_upsampler=self.upsampler)
|
|
|
|
+
|
|
|
|
+ def predict(
|
|
|
|
+ self,
|
|
|
|
+ img: Path = Input(description='Input'),
|
|
|
|
+ version: str = Input(
|
|
|
|
+ description='RealESRGAN version. Please see [Readme] below for more descriptions',
|
|
|
|
+ choices=['General - RealESRGANplus', 'General - v3', 'Anime - anime6B', 'AnimeVideo - v3'],
|
|
|
|
+ default='General - v3'),
|
|
|
|
+ scale: float = Input(description='Rescaling factor', default=2),
|
|
|
|
+ face_enhance: bool = Input(
|
|
|
|
+ description='Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes', default=False),
|
|
|
|
+ tile: int = Input(
|
|
|
|
+ description=
|
|
|
|
+ 'Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200',
|
|
|
|
+ default=0)
|
|
|
|
+ ) -> Path:
|
|
|
|
+ if tile <= 100 or tile is None:
|
|
|
|
+ tile = 0
|
|
|
|
+ print(f'img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}.')
|
|
|
|
+ try:
|
|
|
|
+ extension = os.path.splitext(os.path.basename(str(img)))[1]
|
|
|
|
+ img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
|
|
|
|
+ if len(img.shape) == 3 and img.shape[2] == 4:
|
|
|
|
+ img_mode = 'RGBA'
|
|
|
|
+ elif len(img.shape) == 2:
|
|
|
|
+ img_mode = None
|
|
|
|
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
|
|
+ else:
|
|
|
|
+ img_mode = None
|
|
|
|
+
|
|
|
|
+ h, w = img.shape[0:2]
|
|
|
|
+ if h < 300:
|
|
|
|
+ img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
+
|
|
|
|
+ self.choose_model(scale, version, tile)
|
|
|
|
+
|
|
|
|
+ try:
|
|
|
|
+ if face_enhance:
|
|
|
|
+ _, _, output = self.face_enhancer.enhance(
|
|
|
|
+ img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
|
+ else:
|
|
|
|
+ output, _ = self.upsampler.enhance(img, outscale=scale)
|
|
|
|
+ except RuntimeError as error:
|
|
|
|
+ print('Error', error)
|
|
|
|
+ print('If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.')
|
|
|
|
+
|
|
|
|
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
|
|
|
|
+ extension = 'png'
|
|
|
|
+ # save_path = f'output/out.{extension}'
|
|
|
|
+ # cv2.imwrite(save_path, output)
|
|
|
|
+ out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
|
|
|
|
+ cv2.imwrite(str(out_path), output)
|
|
|
|
+ except Exception as error:
|
|
|
|
+ print('global exception: ', error)
|
|
|
|
+ finally:
|
|
|
|
+ clean_folder('output')
|
|
|
|
+ return out_path
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def clean_folder(folder):
|
|
|
|
+ for filename in os.listdir(folder):
|
|
|
|
+ file_path = os.path.join(folder, filename)
|
|
|
|
+ try:
|
|
|
|
+ if os.path.isfile(file_path) or os.path.islink(file_path):
|
|
|
|
+ os.unlink(file_path)
|
|
|
|
+ elif os.path.isdir(file_path):
|
|
|
|
+ shutil.rmtree(file_path)
|
|
|
|
+ except Exception as e:
|
|
|
|
+ print(f'Failed to delete {file_path}. Reason: {e}')
|