import argparse import cv2 import glob import os from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer def main(): """Inference demo for Real-ESRGAN. """ parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, default='inputs', help='Input image or folder') parser.add_argument( '--model_path', type=str, default='experiments/pretrained_models/RealESRGAN_x4plus.pth', help='Path to the pre-trained model') parser.add_argument('--output', type=str, default='results', help='Output folder') parser.add_argument('--netscale', type=int, default=4, help='Upsample scale factor of the network') parser.add_argument('--outscale', type=float, default=4, help='The final upsampling scale of the image') parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image') parser.add_argument('--tile', type=int, default=0, help='Tile size, 0 for no tile during testing') parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding') parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border') parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face') parser.add_argument('--half', action='store_true', help='Use half precision during inference') parser.add_argument('--block', type=int, default=23, help='num_block in RRDB') parser.add_argument( '--alpha_upsampler', type=str, default='realesrgan', help='The upsampler for the alpha channels. Options: realesrgan | bicubic') parser.add_argument( '--ext', type=str, default='auto', help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs') args = parser.parse_args() if 'RealESRGAN_x4plus_anime_6B.pth' in args.model_path: args.block = 6 elif 'RealESRGAN_x2plus.pth' in args.model_path: args.netscale = 2 model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=args.block, num_grow_ch=32, scale=args.netscale) upsampler = RealESRGANer( scale=args.netscale, model_path=args.model_path, model=model, tile=args.tile, tile_pad=args.tile_pad, pre_pad=args.pre_pad, half=args.half) if args.face_enhance: # Use GFPGAN for face enhancement from gfpgan import GFPGANer face_enhancer = GFPGANer( model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth', upscale=args.outscale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) os.makedirs(args.output, exist_ok=True) if os.path.isfile(args.input): paths = [args.input] else: paths = sorted(glob.glob(os.path.join(args.input, '*'))) for idx, path in enumerate(paths): imgname, extension = os.path.splitext(os.path.basename(path)) print('Testing', idx, imgname) img = cv2.imread(path, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' else: img_mode = None # give warnings for too large/small images h, w = img.shape[0:2] if max(h, w) > 1000 and args.netscale == 4: import warnings warnings.warn('The input image is large, try X2 model for better performance.') if max(h, w) < 500 and args.netscale == 2: import warnings warnings.warn('The input image is small, try X4 model for better performance.') try: if args.face_enhance: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) else: output, _ = upsampler.enhance(img, outscale=args.outscale) except Exception as error: print('Error', error) print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') else: if args.ext == 'auto': extension = extension[1:] else: extension = args.ext if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}') cv2.imwrite(save_path, output) if __name__ == '__main__': main()