123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- from basicsr.utils.registry import ARCH_REGISTRY
- from torch import nn as nn
- from torch.nn import functional as F
- from torch.nn.utils import spectral_norm
- @ARCH_REGISTRY.register()
- class UNetDiscriminatorSN(nn.Module):
- """Defines a U-Net discriminator with spectral normalization (SN)"""
- def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
- super(UNetDiscriminatorSN, self).__init__()
- self.skip_connection = skip_connection
- norm = spectral_norm
- self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
- self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
- self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
- self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
- # upsample
- self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
- self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
- self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
- # extra
- self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
- self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
- self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
- def forward(self, x):
- x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
- x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
- x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
- x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
- # upsample
- x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
- x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
- if self.skip_connection:
- x4 = x4 + x2
- x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
- x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
- if self.skip_connection:
- x5 = x5 + x1
- x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
- x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
- if self.skip_connection:
- x6 = x6 + x0
- # extra
- out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
- out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
- out = self.conv9(out)
- return out
|