1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- import argparse
- import cv2
- import glob
- import numpy as np
- import os
- import torch
- from basicsr.archs.rrdbnet_arch import RRDBNet
- from torch.nn import functional as F
- def main():
- parser = argparse.ArgumentParser()
- parser.add_argument('--model_path', type=str, default='experiments/pretrained_models/RealESRGAN_x4plus.pth')
- parser.add_argument('--scale', type=int, default=4)
- parser.add_argument('--input', type=str, default='inputs', help='input image or folder')
- args = parser.parse_args()
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- # set up model
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=args.scale)
- loadnet = torch.load(args.model_path)
- model.load_state_dict(loadnet['params_ema'], strict=True)
- model.eval()
- model = model.to(device)
- os.makedirs('results/', exist_ok=True)
- for idx, path in enumerate(sorted(glob.glob(os.path.join(args.input, '*')))):
- imgname = os.path.splitext(os.path.basename(path))[0]
- print('Testing', idx, imgname)
- # read image
- img = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
- img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
- img = img.unsqueeze(0).to(device)
- if args.scale == 2:
- mod_scale = 2
- elif args.scale == 1:
- mod_scale = 4
- else:
- mod_scale = None
- if mod_scale is not None:
- h_pad, w_pad = 0, 0
- _, _, h, w = img.size()
- if (h % mod_scale != 0):
- h_pad = (mod_scale - h % mod_scale)
- if (w % mod_scale != 0):
- w_pad = (mod_scale - w % mod_scale)
- img = F.pad(img, (0, w_pad, 0, h_pad), 'reflect')
- try:
- # inference
- with torch.no_grad():
- output = model(img)
- # remove extra pad
- if mod_scale is not None:
- _, _, h, w = output.size()
- output = output[:, :, 0:h - h_pad, 0:w - w_pad]
- # save image
- output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
- output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
- output = (output * 255.0).round().astype(np.uint8)
- cv2.imwrite(f'results/{imgname}_RealESRGAN.png', output)
- except Exception as error:
- print('Error', error)
- if __name__ == '__main__':
- main()
|