123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- import argparse
- import glob
- import os
- from PIL import Image
- def main(args):
- # For DF2K, we consider the following three scales,
- # and the smallest image whose shortest edge is 400
- scale_list = [0.75, 0.5, 1 / 3]
- shortest_edge = 400
- path_list = sorted(glob.glob(os.path.join(args.input, '*')))
- for path in path_list:
- print(path)
- basename = os.path.splitext(os.path.basename(path))[0]
- img = Image.open(path)
- width, height = img.size
- for idx, scale in enumerate(scale_list):
- print(f'\t{scale:.2f}')
- rlt = img.resize((int(width * scale), int(height * scale)), resample=Image.LANCZOS)
- rlt.save(os.path.join(args.output, f'{basename}T{idx}.png'))
- # save the smallest image which the shortest edge is 400
- if width < height:
- ratio = height / width
- width = shortest_edge
- height = int(width * ratio)
- else:
- ratio = width / height
- height = shortest_edge
- width = int(height * ratio)
- rlt = img.resize((int(width), int(height)), resample=Image.LANCZOS)
- rlt.save(os.path.join(args.output, f'{basename}T{idx+1}.png'))
- if __name__ == '__main__':
- """Generate multi-scale versions for GT images with LANCZOS resampling.
- It is now used for DF2K dataset (DIV2K + Flickr 2K)
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('--input', type=str, default='datasets/DF2K/DF2K_HR', help='Input folder')
- parser.add_argument('--output', type=str, default='datasets/DF2K/DF2K_multiscale', help='Output folder')
- args = parser.parse_args()
- os.makedirs(args.output, exist_ok=True)
- main(args)
|