123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 |
- import argparse
- import cv2
- import glob
- import mimetypes
- import numpy as np
- import os
- import queue
- import shutil
- import torch
- from basicsr.archs.rrdbnet_arch import RRDBNet
- from basicsr.utils.logger import AvgTimer
- from tqdm import tqdm
- from realesrgan import IOConsumer, PrefetchReader, RealESRGANer
- from realesrgan.archs.srvgg_arch import SRVGGNetCompact
- def get_frames(args, extract_frames=False):
- # input can be a video file / a folder of frames / an image
- is_video = False
- if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file
- is_video = True
- video_name = os.path.splitext(os.path.basename(args.input))[0]
- if extract_frames:
- frame_folder = os.path.join('tmp_frames', video_name)
- os.makedirs(frame_folder, exist_ok=True)
- # use ffmpeg to extract frames
- os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png')
- # get image path list
- paths = sorted(glob.glob(os.path.join(frame_folder, '*')))
- else:
- paths = []
- # get input video fps
- if args.fps is None:
- import ffmpeg
- probe = ffmpeg.probe(args.input)
- video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
- args.fps = eval(video_streams[0]['avg_frame_rate'])
- elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file
- paths = [args.input]
- else:
- paths = sorted(glob.glob(os.path.join(args.input, '*')))
- assert len(paths) > 0, 'the input folder is empty'
- if args.fps is None:
- args.fps = 24
- return is_video, paths
- def inference_stream(args, upsampler, face_enhancer):
- try:
- import ffmpeg
- except ImportError:
- import pip
- pip.main(['install', '--user', 'ffmpeg-python'])
- import ffmpeg
- is_video, paths = get_frames(args, extract_frames=False)
- video_name = os.path.splitext(os.path.basename(args.input))[0]
- video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
- # decoder
- if is_video:
- # get height and width
- probe = ffmpeg.probe(args.input)
- video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
- width = video_streams[0]['width']
- height = video_streams[0]['height']
- # set up frame decoder
- decoder = (
- ffmpeg.input(args.input).output('pipe:', format='rawvideo', pix_fmt='rgb24', loglevel='warning').run_async(
- pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
- else:
- from PIL import Image
- tmp_img = Image.open(paths[0])
- width, height = tmp_img.size
- idx = 0
- out_width, out_height = int(width * args.outscale), int(height * args.outscale)
- if out_height > 2160:
- print('You are generating video that is larger than 4K, which will be very slow due to IO speed.',
- 'We highly recommend to decrease the outscale(aka, -s).')
- # encoder
- if is_video:
- audio = ffmpeg.input(args.input).audio
- encoder = (
- ffmpeg.input(
- 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}', framerate=args.fps).output(
- audio, video_save_path, pix_fmt='yuv420p', vcodec='libx264', loglevel='info',
- acodec='copy').overwrite_output().run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
- else:
- encoder = (
- ffmpeg.input(
- 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}',
- framerate=args.fps).output(video_save_path, pix_fmt='yuv420p', vcodec='libx264',
- loglevel='info').overwrite_output().run_async(
- pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin))
- while True:
- if is_video:
- img_bytes = decoder.stdout.read(width * height * 3) # 3 bytes for one pixel
- if not img_bytes:
- break
- img = np.frombuffer(img_bytes, np.uint8).reshape([height, width, 3])
- else:
- if idx >= len(paths):
- break
- img = cv2.imread(paths[idx])
- idx += 1
- try:
- if args.face_enhance:
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
- else:
- output, _ = upsampler.enhance(img, outscale=args.outscale)
- except RuntimeError as error:
- print('Error', error)
- print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
- else:
- output = output.astype(np.uint8).tobytes()
- encoder.stdin.write(output)
- torch.cuda.synchronize()
- if is_video:
- decoder.stdin.close()
- decoder.wait()
- encoder.stdin.close()
- encoder.wait()
- def inference_frames(args, upsampler, face_enhancer):
- is_video, paths = get_frames(args, extract_frames=True)
- video_name = os.path.splitext(os.path.basename(args.input))[0]
- # for saving restored frames
- save_frame_folder = os.path.join(args.output, video_name, 'frames_tmpout')
- os.makedirs(save_frame_folder, exist_ok=True)
- timer = AvgTimer()
- timer.start()
- pbar = tqdm(total=len(paths), unit='frame', desc='inference')
- # set up prefetch reader
- reader = PrefetchReader(paths, num_prefetch_queue=4)
- reader.start()
- que = queue.Queue()
- consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)]
- for consumer in consumers:
- consumer.start()
- for idx, (path, img) in enumerate(zip(paths, reader)):
- imgname, extension = os.path.splitext(os.path.basename(path))
- if len(img.shape) == 3 and img.shape[2] == 4:
- img_mode = 'RGBA'
- else:
- img_mode = None
- try:
- if args.face_enhance:
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
- else:
- output, _ = upsampler.enhance(img, outscale=args.outscale)
- except RuntimeError as error:
- print('Error', error)
- print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
- else:
- if args.ext == 'auto':
- extension = extension[1:]
- else:
- extension = args.ext
- if img_mode == 'RGBA': # RGBA images should be saved in png format
- extension = 'png'
- save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}')
- que.put({'output': output, 'save_path': save_path})
- pbar.update(1)
- torch.cuda.synchronize()
- timer.record()
- avg_fps = 1. / (timer.get_avg_time() + 1e-7)
- pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}')
- for _ in range(args.consumer):
- que.put('quit')
- for consumer in consumers:
- consumer.join()
- pbar.close()
- # merge frames to video
- video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
- os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}'
- f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
- # delete tmp file
- shutil.rmtree(save_frame_folder)
- frame_folder = os.path.join('tmp_frames', video_name)
- if os.path.isdir(frame_folder):
- shutil.rmtree(frame_folder)
- def main():
- """Inference demo for Real-ESRGAN.
- It mainly for restoring anime videos.
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('-i', '--input', type=str, default='inputs', help='Input video, image or folder')
- parser.add_argument(
- '-n',
- '--model_name',
- type=str,
- default='realesr-animevideov3',
- help=('Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |'
- ' RealESRGAN_x2plus | '
- 'Default:realesr-animevideov3'))
- parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
- parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
- parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video')
- parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
- parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
- parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
- parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
- parser.add_argument(
- '--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
- parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
- parser.add_argument('--consumer', type=int, default=4, help='Number of IO consumers')
- parser.add_argument('--stream', action='store_true')
- parser.add_argument('--ffmpeg_bin', type=str, default='ffmpeg', help='The path to ffmpeg')
- parser.add_argument(
- '--alpha_upsampler',
- type=str,
- default='realesrgan',
- help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
- parser.add_argument(
- '--ext',
- type=str,
- default='auto',
- help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
- args = parser.parse_args()
- args.input = args.input.rstrip('/').rstrip('\\')
- # ---------------------- determine models according to model names ---------------------- #
- args.model_name = args.model_name.split('.pth')[0]
- if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
- netscale = 4
- elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
- netscale = 4
- elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
- netscale = 2
- elif args.model_name in ['realesr-animevideov3']: # x4 VGG-style model (XS size)
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
- netscale = 4
- # ---------------------- determine model paths ---------------------- #
- model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth')
- if not os.path.isfile(model_path):
- model_path = os.path.join('realesrgan/weights', args.model_name + '.pth')
- if not os.path.isfile(model_path):
- raise ValueError(f'Model {args.model_name} does not exist.')
- # restorer
- upsampler = RealESRGANer(
- scale=netscale,
- model_path=model_path,
- model=model,
- tile=args.tile,
- tile_pad=args.tile_pad,
- pre_pad=args.pre_pad,
- half=not args.fp32)
- if 'anime' in args.model_name and args.face_enhance:
- print('face_enhance is not supported in anime models, we turned this option off for you. '
- 'if you insist on turning it on, please manually comment the relevant lines of code.')
- args.face_enhance = False
- if args.face_enhance: # Use GFPGAN for face enhancement
- from gfpgan import GFPGANer
- face_enhancer = GFPGANer(
- model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
- upscale=args.outscale,
- arch='clean',
- channel_multiplier=2,
- bg_upsampler=upsampler)
- else:
- face_enhancer = None
- os.makedirs(args.output, exist_ok=True)
- if args.stream:
- inference_stream(args, upsampler, face_enhancer)
- else:
- inference_frames(args, upsampler, face_enhancer)
- if __name__ == '__main__':
- main()
|