123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- import cv2
- import math
- import numpy as np
- import os
- import os.path as osp
- import random
- import time
- import torch
- from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
- from basicsr.data.transforms import augment
- from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
- from basicsr.utils.registry import DATASET_REGISTRY
- from torch.utils import data as data
- @DATASET_REGISTRY.register()
- class RealESRGANDataset(data.Dataset):
- """Dataset used for Real-ESRGAN model:
- Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
- It loads gt (Ground-Truth) images, and augments them.
- It also generates blur kernels and sinc kernels for generating low-quality images.
- Note that the low-quality images are processed in tensors on GPUS for faster processing.
- Args:
- opt (dict): Config for train datasets. It contains the following keys:
- dataroot_gt (str): Data root path for gt.
- meta_info (str): Path for meta information file.
- io_backend (dict): IO backend type and other kwarg.
- use_hflip (bool): Use horizontal flips.
- use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
- Please see more options in the codes.
- """
- def __init__(self, opt):
- super(RealESRGANDataset, self).__init__()
- self.opt = opt
- self.file_client = None
- self.io_backend_opt = opt['io_backend']
- self.gt_folder = opt['dataroot_gt']
- # file client (lmdb io backend)
- if self.io_backend_opt['type'] == 'lmdb':
- self.io_backend_opt['db_paths'] = [self.gt_folder]
- self.io_backend_opt['client_keys'] = ['gt']
- if not self.gt_folder.endswith('.lmdb'):
- raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
- with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
- self.paths = [line.split('.')[0] for line in fin]
- else:
- # disk backend with meta_info
- # Each line in the meta_info describes the relative path to an image
- with open(self.opt['meta_info']) as fin:
- paths = [line.strip().split(' ')[0] for line in fin]
- self.paths = [os.path.join(self.gt_folder, v) for v in paths]
- # blur settings for the first degradation
- self.blur_kernel_size = opt['blur_kernel_size']
- self.kernel_list = opt['kernel_list']
- self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
- self.blur_sigma = opt['blur_sigma']
- self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
- self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
- self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
- # blur settings for the second degradation
- self.blur_kernel_size2 = opt['blur_kernel_size2']
- self.kernel_list2 = opt['kernel_list2']
- self.kernel_prob2 = opt['kernel_prob2']
- self.blur_sigma2 = opt['blur_sigma2']
- self.betag_range2 = opt['betag_range2']
- self.betap_range2 = opt['betap_range2']
- self.sinc_prob2 = opt['sinc_prob2']
- # a final sinc filter
- self.final_sinc_prob = opt['final_sinc_prob']
- self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
- # TODO: kernel range is now hard-coded, should be in the configure file
- self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
- self.pulse_tensor[10, 10] = 1
- def __getitem__(self, index):
- if self.file_client is None:
- self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
- # -------------------------------- Load gt images -------------------------------- #
- # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
- gt_path = self.paths[index]
- # avoid errors caused by high latency in reading files
- retry = 3
- while retry > 0:
- try:
- img_bytes = self.file_client.get(gt_path, 'gt')
- except (IOError, OSError) as e:
- logger = get_root_logger()
- logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
- # change another file to read
- index = random.randint(0, self.__len__())
- gt_path = self.paths[index]
- time.sleep(1) # sleep 1s for occasional server congestion
- else:
- break
- finally:
- retry -= 1
- img_gt = imfrombytes(img_bytes, float32=True)
- # -------------------- Do augmentation for training: flip, rotation -------------------- #
- img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
- # crop or pad to 400
- # TODO: 400 is hard-coded. You may change it accordingly
- h, w = img_gt.shape[0:2]
- crop_pad_size = 400
- # pad
- if h < crop_pad_size or w < crop_pad_size:
- pad_h = max(0, crop_pad_size - h)
- pad_w = max(0, crop_pad_size - w)
- img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
- # crop
- if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
- h, w = img_gt.shape[0:2]
- # randomly choose top and left coordinates
- top = random.randint(0, h - crop_pad_size)
- left = random.randint(0, w - crop_pad_size)
- img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
- # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
- kernel_size = random.choice(self.kernel_range)
- if np.random.uniform() < self.opt['sinc_prob']:
- # this sinc filter setting is for kernels ranging from [7, 21]
- if kernel_size < 13:
- omega_c = np.random.uniform(np.pi / 3, np.pi)
- else:
- omega_c = np.random.uniform(np.pi / 5, np.pi)
- kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
- else:
- kernel = random_mixed_kernels(
- self.kernel_list,
- self.kernel_prob,
- kernel_size,
- self.blur_sigma,
- self.blur_sigma, [-math.pi, math.pi],
- self.betag_range,
- self.betap_range,
- noise_range=None)
- # pad kernel
- pad_size = (21 - kernel_size) // 2
- kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
- # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
- kernel_size = random.choice(self.kernel_range)
- if np.random.uniform() < self.opt['sinc_prob2']:
- if kernel_size < 13:
- omega_c = np.random.uniform(np.pi / 3, np.pi)
- else:
- omega_c = np.random.uniform(np.pi / 5, np.pi)
- kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
- else:
- kernel2 = random_mixed_kernels(
- self.kernel_list2,
- self.kernel_prob2,
- kernel_size,
- self.blur_sigma2,
- self.blur_sigma2, [-math.pi, math.pi],
- self.betag_range2,
- self.betap_range2,
- noise_range=None)
- # pad kernel
- pad_size = (21 - kernel_size) // 2
- kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
- # ------------------------------------- the final sinc kernel ------------------------------------- #
- if np.random.uniform() < self.opt['final_sinc_prob']:
- kernel_size = random.choice(self.kernel_range)
- omega_c = np.random.uniform(np.pi / 3, np.pi)
- sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
- sinc_kernel = torch.FloatTensor(sinc_kernel)
- else:
- sinc_kernel = self.pulse_tensor
- # BGR to RGB, HWC to CHW, numpy to tensor
- img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
- kernel = torch.FloatTensor(kernel)
- kernel2 = torch.FloatTensor(kernel2)
- return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
- return return_d
- def __len__(self):
- return len(self.paths)
|