123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # flake8: noqa
- # This file is used for deploying replicate models
- # running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
- # push: cog push r8.im/xinntao/realesrgan
- import os
- os.system('pip install gfpgan')
- os.system('python setup.py develop')
- import cv2
- import shutil
- import tempfile
- import torch
- from basicsr.archs.rrdbnet_arch import RRDBNet
- from basicsr.archs.srvgg_arch import SRVGGNetCompact
- from realesrgan.utils import RealESRGANer
- try:
- from cog import BasePredictor, Input, Path
- from gfpgan import GFPGANer
- except Exception:
- print('please install cog and realesrgan package')
- class Predictor(BasePredictor):
- def setup(self):
- os.makedirs('output', exist_ok=True)
- # download weights
- if not os.path.exists('weights/realesr-general-x4v3.pth'):
- os.system(
- 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights'
- )
- if not os.path.exists('weights/GFPGANv1.4.pth'):
- os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights')
- if not os.path.exists('weights/RealESRGAN_x4plus.pth'):
- os.system(
- 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights'
- )
- if not os.path.exists('weights/RealESRGAN_x4plus_anime_6B.pth'):
- os.system(
- 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights'
- )
- if not os.path.exists('weights/realesr-animevideov3.pth'):
- os.system(
- 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights'
- )
- def choose_model(self, scale, version, tile=0):
- half = True if torch.cuda.is_available() else False
- if version == 'General - RealESRGANplus':
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
- model_path = 'weights/RealESRGAN_x4plus.pth'
- self.upsampler = RealESRGANer(
- scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
- elif version == 'General - v3':
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
- model_path = 'weights/realesr-general-x4v3.pth'
- self.upsampler = RealESRGANer(
- scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
- elif version == 'Anime - anime6B':
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
- model_path = 'weights/RealESRGAN_x4plus_anime_6B.pth'
- self.upsampler = RealESRGANer(
- scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
- elif version == 'AnimeVideo - v3':
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
- model_path = 'weights/realesr-animevideov3.pth'
- self.upsampler = RealESRGANer(
- scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
- self.face_enhancer = GFPGANer(
- model_path='weights/GFPGANv1.4.pth',
- upscale=scale,
- arch='clean',
- channel_multiplier=2,
- bg_upsampler=self.upsampler)
- def predict(
- self,
- img: Path = Input(description='Input'),
- version: str = Input(
- description='RealESRGAN version. Please see [Readme] below for more descriptions',
- choices=['General - RealESRGANplus', 'General - v3', 'Anime - anime6B', 'AnimeVideo - v3'],
- default='General - v3'),
- scale: float = Input(description='Rescaling factor', default=2),
- face_enhance: bool = Input(
- description='Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes', default=False),
- tile: int = Input(
- description=
- 'Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200',
- default=0)
- ) -> Path:
- if tile <= 100 or tile is None:
- tile = 0
- print(f'img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}.')
- try:
- extension = os.path.splitext(os.path.basename(str(img)))[1]
- img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
- if len(img.shape) == 3 and img.shape[2] == 4:
- img_mode = 'RGBA'
- elif len(img.shape) == 2:
- img_mode = None
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- else:
- img_mode = None
- h, w = img.shape[0:2]
- if h < 300:
- img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
- self.choose_model(scale, version, tile)
- try:
- if face_enhance:
- _, _, output = self.face_enhancer.enhance(
- img, has_aligned=False, only_center_face=False, paste_back=True)
- else:
- output, _ = self.upsampler.enhance(img, outscale=scale)
- except RuntimeError as error:
- print('Error', error)
- print('If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.')
- if img_mode == 'RGBA': # RGBA images should be saved in png format
- extension = 'png'
- # save_path = f'output/out.{extension}'
- # cv2.imwrite(save_path, output)
- out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
- cv2.imwrite(str(out_path), output)
- except Exception as error:
- print('global exception: ', error)
- finally:
- clean_folder('output')
- return out_path
- def clean_folder(folder):
- for filename in os.listdir(folder):
- file_path = os.path.join(folder, filename)
- try:
- if os.path.isfile(file_path) or os.path.islink(file_path):
- os.unlink(file_path)
- elif os.path.isdir(file_path):
- shutil.rmtree(file_path)
- except Exception as e:
- print(f'Failed to delete {file_path}. Reason: {e}')
|