123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- import argparse
- import cv2
- import glob
- import os
- from basicsr.archs.rrdbnet_arch import RRDBNet
- from basicsr.utils.download_util import load_file_from_url
- from realesrgan import RealESRGANer
- from realesrgan.archs.srvgg_arch import SRVGGNetCompact
- def main():
- """Inference demo for Real-ESRGAN.
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
- parser.add_argument(
- '-n',
- '--model_name',
- type=str,
- default='RealESRGAN_x4plus',
- help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | '
- 'realesr-animevideov3 | realesr-general-x4v3'))
- parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
- parser.add_argument(
- '-dn',
- '--denoise_strength',
- type=float,
- default=0.5,
- help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. '
- 'Only used for the realesr-general-x4v3 model'))
- parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
- parser.add_argument(
- '--model_path', type=str, default=None, help='[Option] Model path. Usually, you do not need to specify it')
- parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
- parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
- parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
- parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
- parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
- parser.add_argument(
- '--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
- parser.add_argument(
- '--alpha_upsampler',
- type=str,
- default='realesrgan',
- help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
- parser.add_argument(
- '--ext',
- type=str,
- default='auto',
- help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
- parser.add_argument(
- '-g', '--gpu-id', type=int, default=None, help='gpu device to use (default=None) can be 0,1,2 for multi-gpu')
- args = parser.parse_args()
- # determine models according to model names
- args.model_name = args.model_name.split('.')[0]
- if args.model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
- netscale = 4
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
- elif args.model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
- netscale = 4
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
- elif args.model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
- netscale = 4
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
- elif args.model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
- netscale = 2
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
- elif args.model_name == 'realesr-animevideov3': # x4 VGG-style model (XS size)
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
- netscale = 4
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth']
- elif args.model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
- netscale = 4
- file_url = [
- 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
- 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
- ]
- # determine model paths
- if args.model_path is not None:
- model_path = args.model_path
- else:
- model_path = os.path.join('weights', args.model_name + '.pth')
- if not os.path.isfile(model_path):
- ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
- for url in file_url:
- # model_path will be updated
- model_path = load_file_from_url(
- url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
- # use dni to control the denoise strength
- dni_weight = None
- if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1:
- wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
- model_path = [model_path, wdn_model_path]
- dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
- # restorer
- upsampler = RealESRGANer(
- scale=netscale,
- model_path=model_path,
- dni_weight=dni_weight,
- model=model,
- tile=args.tile,
- tile_pad=args.tile_pad,
- pre_pad=args.pre_pad,
- half=not args.fp32,
- gpu_id=args.gpu_id)
- if args.face_enhance: # Use GFPGAN for face enhancement
- from gfpgan import GFPGANer
- face_enhancer = GFPGANer(
- model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
- upscale=args.outscale,
- arch='clean',
- channel_multiplier=2,
- bg_upsampler=upsampler)
- os.makedirs(args.output, exist_ok=True)
- if os.path.isfile(args.input):
- paths = [args.input]
- else:
- paths = sorted(glob.glob(os.path.join(args.input, '*')))
- for idx, path in enumerate(paths):
- imgname, extension = os.path.splitext(os.path.basename(path))
- print('Testing', idx, imgname)
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
- if len(img.shape) == 3 and img.shape[2] == 4:
- img_mode = 'RGBA'
- else:
- img_mode = None
- try:
- if args.face_enhance:
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
- else:
- output, _ = upsampler.enhance(img, outscale=args.outscale)
- except RuntimeError as error:
- print('Error', error)
- print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
- else:
- if args.ext == 'auto':
- extension = extension[1:]
- else:
- extension = args.ext
- if img_mode == 'RGBA': # RGBA images should be saved in png format
- extension = 'png'
- if args.suffix == '':
- save_path = os.path.join(args.output, f'{imgname}.{extension}')
- else:
- save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
- cv2.imwrite(save_path, output)
- if __name__ == '__main__':
- main()
|