123456789101112131415161718192021222324252627282930313233343536 |
- import argparse
- import torch
- import torch.onnx
- from basicsr.archs.rrdbnet_arch import RRDBNet
- def main(args):
- # An instance of the model
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
- if args.params:
- keyname = 'params'
- else:
- keyname = 'params_ema'
- model.load_state_dict(torch.load(args.input)[keyname])
- # set the train mode to false since we will only run the forward pass.
- model.train(False)
- model.cpu().eval()
- # An example input
- x = torch.rand(1, 3, 64, 64)
- # Export the model
- with torch.no_grad():
- torch_out = torch.onnx._export(model, x, args.output, opset_version=11, export_params=True)
- print(torch_out.shape)
- if __name__ == '__main__':
- """Convert pytorch model to onnx models"""
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--input', type=str, default='experiments/pretrained_models/RealESRGAN_x4plus.pth', help='Input model path')
- parser.add_argument('--output', type=str, default='realesrgan-x4.onnx', help='Output onnx path')
- parser.add_argument('--params', action='store_false', help='Use params instead of params_ema')
- args = parser.parse_args()
- main(args)
|