1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- import argparse
- import cv2
- import glob
- import os
- from realesrgan import RealESRGANer
- def main():
- parser = argparse.ArgumentParser()
- parser.add_argument('--input', type=str, default='inputs', help='Input image or folder')
- parser.add_argument(
- '--model_path',
- type=str,
- default='experiments/pretrained_models/RealESRGAN_x4plus.pth',
- help='Path to the pre-trained model')
- parser.add_argument('--output', type=str, default='results', help='Output folder')
- parser.add_argument('--netscale', type=int, default=4, help='Upsample scale factor of the network')
- parser.add_argument('--outscale', type=float, default=4, help='The final upsampling scale of the image')
- parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
- parser.add_argument('--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
- parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
- parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
- parser.add_argument('--half', action='store_true', help='Use half precision during inference')
- parser.add_argument(
- '--alpha_upsampler',
- type=str,
- default='realesrgan',
- help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
- parser.add_argument(
- '--ext',
- type=str,
- default='auto',
- help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
- args = parser.parse_args()
- upsampler = RealESRGANer(
- scale=args.netscale,
- model_path=args.model_path,
- tile=args.tile,
- tile_pad=args.tile_pad,
- pre_pad=args.pre_pad,
- half=args.half)
- os.makedirs(args.output, exist_ok=True)
- if os.path.isfile(args.input):
- paths = [args.input]
- else:
- paths = sorted(glob.glob(os.path.join(args.input, '*')))
- for idx, path in enumerate(paths):
- imgname, extension = os.path.splitext(os.path.basename(path))
- print('Testing', idx, imgname)
- img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
- h, w = img.shape[0:2]
- if max(h, w) > 1000 and args.netscale == 4:
- print('WARNING: The input image is large, try X2 model for better performace.')
- if max(h, w) < 500 and args.netscale == 2:
- print('WARNING: The input image is small, try X4 model for better performace.')
- try:
- output, img_mode = upsampler.enhance(img, outscale=args.outscale)
- except Exception as error:
- print('Error', error)
- else:
- if args.ext == 'auto':
- extension = extension[1:]
- else:
- extension = args.ext
- if img_mode == 'RGBA': # RGBA images should be saved in png format
- extension = 'png'
- save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
- cv2.imwrite(save_path, output)
- if __name__ == '__main__':
- main()
|