123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- from basicsr.utils.registry import ARCH_REGISTRY
- from torch import nn as nn
- from torch.nn import functional as F
- @ARCH_REGISTRY.register()
- class SRVGGNetCompact(nn.Module):
- """A compact VGG-style network structure for super-resolution.
- It is a compact network structure, which performs upsampling in the last layer and no convolution is
- conducted on the HR feature space.
- Args:
- num_in_ch (int): Channel number of inputs. Default: 3.
- num_out_ch (int): Channel number of outputs. Default: 3.
- num_feat (int): Channel number of intermediate features. Default: 64.
- num_conv (int): Number of convolution layers in the body network. Default: 16.
- upscale (int): Upsampling factor. Default: 4.
- act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
- """
- def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
- super(SRVGGNetCompact, self).__init__()
- self.num_in_ch = num_in_ch
- self.num_out_ch = num_out_ch
- self.num_feat = num_feat
- self.num_conv = num_conv
- self.upscale = upscale
- self.act_type = act_type
- self.body = nn.ModuleList()
- # the first conv
- self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
- # the first activation
- if act_type == 'relu':
- activation = nn.ReLU(inplace=True)
- elif act_type == 'prelu':
- activation = nn.PReLU(num_parameters=num_feat)
- elif act_type == 'leakyrelu':
- activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
- self.body.append(activation)
- # the body structure
- for _ in range(num_conv):
- self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
- # activation
- if act_type == 'relu':
- activation = nn.ReLU(inplace=True)
- elif act_type == 'prelu':
- activation = nn.PReLU(num_parameters=num_feat)
- elif act_type == 'leakyrelu':
- activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
- self.body.append(activation)
- # the last conv
- self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
- # upsample
- self.upsampler = nn.PixelShuffle(upscale)
- def forward(self, x):
- out = x
- for i in range(0, len(self.body)):
- out = self.body[i](out)
- out = self.upsampler(out)
- # add the nearest upsampled image, so that the network learns the residual
- base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
- out += base
- return out
|