1
0
Эх сурвалжийг харах

[DOCS] Fixes code snippet testing for machine learning (#31189)

Lisa Cawley 7 жил өмнө
parent
commit
5971eb83c4

+ 0 - 8
x-pack/docs/build.gradle

@@ -9,13 +9,6 @@ apply plugin: 'elasticsearch.docs-test'
  * only remove entries from this list. When it is empty we'll remove it
  * entirely and have a party! There will be cake and everything.... */
 buildRestTests.expectedUnconvertedCandidates = [
-        'en/ml/functions/count.asciidoc',
-        'en/ml/functions/geo.asciidoc',
-        'en/ml/functions/info.asciidoc',
-        'en/ml/functions/metric.asciidoc',
-        'en/ml/functions/rare.asciidoc',
-        'en/ml/functions/sum.asciidoc',
-        'en/ml/functions/time.asciidoc',
         'en/rest-api/watcher/put-watch.asciidoc',
         'en/security/authentication/user-cache.asciidoc',
         'en/security/authorization/field-and-document-access-control.asciidoc',
@@ -56,7 +49,6 @@ buildRestTests.expectedUnconvertedCandidates = [
         'en/watcher/troubleshooting.asciidoc',
         'en/rest-api/license/delete-license.asciidoc',
         'en/rest-api/license/update-license.asciidoc',
-        'en/ml/api-quickref.asciidoc',
         'en/rest-api/ml/delete-snapshot.asciidoc',
         'en/rest-api/ml/forecast.asciidoc',
         'en/rest-api/ml/get-bucket.asciidoc',

+ 2 - 1
x-pack/docs/en/ml/aggregations.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-configuring-aggregation]]
-=== Aggregating Data For Faster Performance
+=== Aggregating data for faster performance
 
 By default, {dfeeds} fetch data from {es} using search and scroll requests.
 It can be significantly more efficient, however, to aggregate data in {es}

+ 3 - 1
x-pack/docs/en/ml/api-quickref.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-api-quickref]]
-== API Quick Reference
+== API quick reference
 
 All {ml} endpoints have the following base:
 
@@ -7,6 +8,7 @@ All {ml} endpoints have the following base:
 ----
 /_xpack/ml/
 ----
+// NOTCONSOLE
 
 The main {ml} resources can be accessed with a variety of endpoints:
 

+ 3 - 2
x-pack/docs/en/ml/categories.asciidoc

@@ -1,3 +1,4 @@
+[role="xpack"]
 [[ml-configuring-categories]]
 === Categorizing log messages
 
@@ -77,7 +78,7 @@ NOTE: To add the `categorization_examples_limit` property, you must use the
 
 [float]
 [[ml-configuring-analyzer]]
-==== Customizing the Categorization Analyzer
+==== Customizing the categorization analyzer
 
 Categorization uses English dictionary words to identify log message categories.
 By default, it also uses English tokenization rules. For this reason, if you use
@@ -213,7 +214,7 @@ API examples above.
 
 [float]
 [[ml-viewing-categories]]
-==== Viewing Categorization Results
+==== Viewing categorization results
 
 After you open the job and start the {dfeed} or supply data to the job, you can
 view the categorization results in {kib}. For example:

+ 2 - 1
x-pack/docs/en/ml/configuring.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-configuring]]
-== Configuring Machine Learning
+== Configuring machine learning
 
 If you want to use {xpackml} features, there must be at least one {ml} node in
 your cluster and all master-eligible nodes must have {ml} enabled. By default,

+ 1 - 1
x-pack/docs/en/ml/customurl.asciidoc

@@ -48,7 +48,7 @@ using the {ml} APIs.
 
 [float]
 [[ml-configuring-url-strings]]
-==== String Substitution in Custom URLs
+==== String substitution in custom URLs
 
 You can use dollar sign ($) delimited tokens in a custom URL. These tokens are
 substituted for the values of the corresponding fields in the anomaly records.

+ 2 - 1
x-pack/docs/en/ml/functions.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-functions]]
-== Function Reference
+== Function reference
 
 The {xpackml} features include analysis functions that provide a wide variety of
 flexible ways to analyze data for anomalies.

+ 95 - 24
x-pack/docs/en/ml/functions/count.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-count-functions]]
-=== Count Functions
+=== Count functions
 
 Count functions detect anomalies when the number of events in a bucket is
 anomalous.
@@ -21,7 +22,7 @@ The {xpackml} features include the following count functions:
 
 [float]
 [[ml-count]]
-===== Count, High_count, Low_count
+===== Count, high_count, low_count
 
 The `count` function detects anomalies when the number of events in a bucket is
 anomalous.
@@ -44,8 +45,20 @@ see {ref}/ml-job-resource.html#ml-detectorconfig[Detector Configuration Objects]
 .Example 1: Analyzing events with the count function
 [source,js]
 --------------------------------------------------
-{ "function" : "count" }
+PUT _xpack/ml/anomaly_detectors/example1
+{
+  "analysis_config": {
+    "detectors": [{
+      "function" : "count"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
+}
 --------------------------------------------------
+// CONSOLE
 
 This example is probably the simplest possible analysis. It identifies
 time buckets during which the overall count of events is higher or lower than
@@ -57,12 +70,22 @@ and detects when the event rate is unusual compared to its past behavior.
 .Example 2: Analyzing errors with the high_count function
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/anomaly_detectors/example2
 {
-  "function" : "high_count",
-  "by_field_name" : "error_code",
-  "over_field_name": "user"
+  "analysis_config": {
+    "detectors": [{
+      "function" : "high_count",
+      "by_field_name" : "error_code",
+      "over_field_name": "user"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
 }
 --------------------------------------------------
+// CONSOLE
 
 If you use this `high_count` function in a detector in your job, it
 models the event rate for each error code. It detects users that generate an
@@ -72,11 +95,21 @@ unusually high count of error codes compared to other users.
 .Example 3: Analyzing status codes with the low_count function
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/anomaly_detectors/example3
 {
-  "function" : "low_count",
-  "by_field_name" : "status_code"
+  "analysis_config": {
+    "detectors": [{
+      "function" : "low_count",
+      "by_field_name" : "status_code"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
 }
 --------------------------------------------------
+// CONSOLE
 
 In this example, the function detects when the count of events for a
 status code is lower than usual.
@@ -88,22 +121,30 @@ compared to its past behavior.
 .Example 4: Analyzing aggregated data with the count function
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/anomaly_detectors/example4
 {
-  "summary_count_field_name" : "events_per_min",
-  "detectors" [
-      { "function" : "count" }
-   ]
-}
+  "analysis_config": {
+    "summary_count_field_name" : "events_per_min",
+    "detectors": [{
+      "function" : "count"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
+}  
 --------------------------------------------------
+// CONSOLE
 
 If you are analyzing an aggregated `events_per_min` field, do not use a sum
 function (for example, `sum(events_per_min)`). Instead, use the count function
-and the `summary_count_field_name` property.
-//TO-DO: For more information, see <<aggreggations.asciidoc>>.
+and the `summary_count_field_name` property. For more information, see 
+<<ml-configuring-aggregation>>.
 
 [float]
 [[ml-nonzero-count]]
-===== Non_zero_count, High_non_zero_count, Low_non_zero_count
+===== Non_zero_count, high_non_zero_count, low_non_zero_count
 
 The `non_zero_count` function detects anomalies when the number of events in a
 bucket is anomalous, but it ignores cases where the bucket count is zero. Use
@@ -144,11 +185,21 @@ The `non_zero_count` function models only the following data:
 .Example 5: Analyzing signatures with the high_non_zero_count function
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/anomaly_detectors/example5
 {
-  "function" : "high_non_zero_count",
-  "by_field_name" : "signaturename"
+  "analysis_config": {
+    "detectors": [{
+      "function" : "high_non_zero_count",
+      "by_field_name" : "signaturename"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
 }
 --------------------------------------------------
+// CONSOLE
 
 If you use this `high_non_zero_count` function in a detector in your job, it
 models the count of events for the `signaturename` field. It ignores any buckets
@@ -163,7 +214,7 @@ data is sparse, use the `count` functions, which are optimized for that scenario
 
 [float]
 [[ml-distinct-count]]
-===== Distinct_count, High_distinct_count, Low_distinct_count
+===== Distinct_count, high_distinct_count, low_distinct_count
 
 The `distinct_count` function detects anomalies where the number of distinct
 values in one field is unusual.
@@ -187,11 +238,21 @@ see {ref}/ml-job-resource.html#ml-detectorconfig[Detector Configuration Objects]
 .Example 6: Analyzing users with the distinct_count function
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/anomaly_detectors/example6
 {
-  "function" : "distinct_count",
-  "field_name" : "user"
+  "analysis_config": {
+    "detectors": [{
+      "function" : "distinct_count",
+      "field_name" : "user"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
 }
 --------------------------------------------------
+// CONSOLE
 
 This `distinct_count` function detects when a system has an unusual number
 of logged in users. When you use this function in a detector in your job, it
@@ -201,12 +262,22 @@ users is unusual compared to the past.
 .Example 7: Analyzing ports with the high_distinct_count function
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/anomaly_detectors/example7
 {
-  "function" : "high_distinct_count",
-  "field_name" : "dst_port",
-  "over_field_name": "src_ip"
+  "analysis_config": {
+    "detectors": [{
+      "function" : "high_distinct_count",
+      "field_name" : "dst_port",
+      "over_field_name": "src_ip"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
 }
 --------------------------------------------------
+// CONSOLE
 
 This example detects instances of port scanning. When you use this function in a
 detector in your job, it models the distinct count of ports. It also detects the

+ 26 - 4
x-pack/docs/en/ml/functions/geo.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-geo-functions]]
-=== Geographic Functions
+=== Geographic functions
 
 The geographic functions detect anomalies in the geographic location of the
 input data.
@@ -28,12 +29,22 @@ see {ref}/ml-job-resource.html#ml-detectorconfig[Detector Configuration Objects]
 .Example 1: Analyzing transactions with the lat_long function
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/anomaly_detectors/example1
 {
-  "function" : "lat_long",
-  "field_name" : "transactionCoordinates",
-  "by_field_name" : "creditCardNumber"
+  "analysis_config": {
+    "detectors": [{
+      "function" : "lat_long",
+      "field_name" : "transactionCoordinates",
+      "by_field_name" : "creditCardNumber"
+    }]
+  },
+  "data_description": {
+    "time_field":"timestamp",
+    "time_format": "epoch_ms"
+  }
 }
 --------------------------------------------------
+// CONSOLE
 
 If you use this `lat_long` function in a detector in your job, it
 detects anomalies where the geographic location of a credit card transaction is
@@ -54,6 +65,7 @@ For example, JSON data might contain the following transaction coordinates:
   "creditCardNumber": "1234123412341234"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 In {es}, location data is likely to be stored in `geo_point` fields. For more
 information, see {ref}/geo-point.html[Geo-point datatype]. This data type is not
@@ -64,7 +76,15 @@ format. For example, the following Painless script transforms
 
 [source,js]
 --------------------------------------------------
+PUT _xpack/ml/datafeeds/datafeed-test2
 {
+  "job_id": "farequote",
+  "indices": ["farequote"],
+  "query": {
+    "match_all": {
+          "boost": 1
+    }
+  },
   "script_fields": {
     "lat-lon": {
       "script": {
@@ -75,5 +95,7 @@ format. For example, the following Painless script transforms
   }
 }
 --------------------------------------------------
+// CONSOLE
+// TEST[setup:farequote_job]
 
 For more information, see <<ml-configuring-transform>>.

+ 3 - 0
x-pack/docs/en/ml/functions/info.asciidoc

@@ -40,6 +40,7 @@ For more information about those properties, see
   "over_field_name" : "highest_registered_domain"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `info_content` function in a detector in your job, it models
 information that is present in the `subdomain` string. It detects anomalies
@@ -60,6 +61,7 @@ choice.
   "over_field_name" : "src_ip"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `high_info_content` function in a detector in your job, it
 models information content that is held in the DNS query string. It detects
@@ -77,6 +79,7 @@ information content is higher than expected.
   "by_field_name" : "logfilename"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `low_info_content` function in a detector in your job, it models
 information content that is present in the message string for each

+ 16 - 4
x-pack/docs/en/ml/functions/metric.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-metric-functions]]
-=== Metric Functions
+=== Metric functions
 
 The metric functions include functions such as mean, min and max. These values
 are calculated for each bucket. Field values that cannot be converted to
@@ -42,6 +43,7 @@ For more information about those properties, see
   "by_field_name" : "product"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `min` function in a detector in your job, it detects where the
 smallest transaction is lower than previously observed. You can use this
@@ -76,6 +78,7 @@ For more information about those properties, see
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `max` function in a detector in your job, it detects where the
 longest `responsetime` is longer than previously observed. You can use this
@@ -98,6 +101,7 @@ to previous applications.
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 The analysis in the previous example can be performed alongside `high_mean`
 functions by application. By combining detectors and using the same influencer
@@ -106,7 +110,7 @@ response times for each bucket.
 
 [float]
 [[ml-metric-median]]
-==== Median, High_median, Low_median
+==== Median, high_median, low_median
 
 The `median` function detects anomalies in the statistical median of a value.
 The median value is calculated for each bucket.
@@ -136,6 +140,7 @@ For more information about those properties, see
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `median` function in a detector in your job, it models the
 median `responsetime` for each application over time. It detects when the median
@@ -143,7 +148,7 @@ median `responsetime` for each application over time. It detects when the median
 
 [float]
 [[ml-metric-mean]]
-==== Mean, High_mean, Low_mean
+==== Mean, high_mean, low_mean
 
 The `mean` function detects anomalies in the arithmetic mean of a value.
 The mean value is calculated for each bucket.
@@ -173,6 +178,7 @@ For more information about those properties, see
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `mean` function in a detector in your job, it models the mean
 `responsetime` for each application over time. It detects when the mean
@@ -187,6 +193,7 @@ If you use this `mean` function in a detector in your job, it models the mean
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `high_mean` function in a detector in your job, it models the
 mean `responsetime` for each application over time. It detects when the mean
@@ -201,6 +208,7 @@ mean `responsetime` for each application over time. It detects when the mean
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `low_mean` function in a detector in your job, it models the
 mean `responsetime` for each application over time. It detects when the mean
@@ -237,6 +245,7 @@ For more information about those properties, see
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `metric` function in a detector in your job, it models the
 mean, min, and max `responsetime` for each application over time. It detects
@@ -245,7 +254,7 @@ when the mean, min, or max `responsetime` is unusual compared to previous
 
 [float]
 [[ml-metric-varp]]
-==== Varp, High_varp, Low_varp
+==== Varp, high_varp, low_varp
 
 The `varp` function detects anomalies in the variance of a value which is a
 measure of the variability and spread in the data.
@@ -273,6 +282,7 @@ For more information about those properties, see
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `varp` function in a detector in your job, it models the
 variance in values of `responsetime` for each application over time. It detects
@@ -288,6 +298,7 @@ behavior.
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `high_varp` function in a detector in your job, it models the
 variance in values of `responsetime` for each application over time. It detects
@@ -303,6 +314,7 @@ behavior.
   "by_field_name" : "application"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `low_varp` function in a detector in your job, it models the
 variance in values of `responsetime` for each application over time. It detects

+ 5 - 1
x-pack/docs/en/ml/functions/rare.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-rare-functions]]
-=== Rare Functions
+=== Rare functions
 
 The rare functions detect values that occur rarely in time or rarely for a
 population.
@@ -54,6 +55,7 @@ For more information about those properties, see
   "by_field_name" : "status"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `rare` function in a detector in your job, it detects values
 that are rare in time. It models status codes that occur over time and detects
@@ -69,6 +71,7 @@ status codes in a web access log that have never (or rarely) occurred before.
   "over_field_name" : "clientip"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `rare` function in a detector in your job, it detects values
 that are rare in a population. It models status code and client IP interactions
@@ -111,6 +114,7 @@ For more information about those properties, see
   "over_field_name" : "clientip"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `freq_rare` function in a detector in your job, it
 detects values that are frequently rare in a population. It models URI paths and

+ 7 - 11
x-pack/docs/en/ml/functions/sum.asciidoc

@@ -1,6 +1,6 @@
-
+[role="xpack"]
 [[ml-sum-functions]]
-=== Sum Functions
+=== Sum functions
 
 The sum functions detect anomalies when the sum of a field in a bucket is anomalous.
 
@@ -16,16 +16,9 @@ The {xpackml} features include the following sum functions:
 * xref:ml-sum[`sum`, `high_sum`, `low_sum`]
 * xref:ml-nonnull-sum[`non_null_sum`, `high_non_null_sum`, `low_non_null_sum`]
 
-////
-TBD: Incorporate from prelert docs?:
-Input data may contain pre-calculated fields giving the total count of some value e.g. transactions per minute.
-Ensure you are familiar with our advice on Summarization of Input Data, as this is likely to provide
-a more appropriate method to using the sum function.
-////
-
 [float]
 [[ml-sum]]
-==== Sum, High_sum, Low_sum
+==== Sum, high_sum, low_sum
 
 The `sum` function detects anomalies where the sum of a field in a bucket is
 anomalous.
@@ -54,6 +47,7 @@ For more information about those properties, see
   "over_field_name" : "employee"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `sum` function in a detector in your job, it
 models total expenses per employees for each cost center. For each time bucket,
@@ -69,6 +63,7 @@ to other employees.
   "over_field_name" : "cs_host"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `high_sum` function in a detector in your job, it
 models total `cs_bytes`. It detects `cs_hosts` that transfer unusually high
@@ -79,7 +74,7 @@ to find users that are abusing internet privileges.
 
 [float]
 [[ml-nonnull-sum]]
-==== Non_null_sum, High_non_null_sum, Low_non_null_sum
+==== Non_null_sum, high_non_null_sum, low_non_null_sum
 
 The `non_null_sum` function is useful if your data is sparse. Buckets without
 values are ignored and buckets with a zero value are analyzed.
@@ -110,6 +105,7 @@ is not applicable for this function.
   "byFieldName" : "employee"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `high_non_null_sum` function in a detector in your job, it
 models the total `amount_approved` for each employee. It ignores any buckets

+ 4 - 1
x-pack/docs/en/ml/functions/time.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-time-functions]]
-=== Time Functions
+=== Time functions
 
 The time functions detect events that happen at unusual times, either of the day
 or of the week. These functions can be used to find unusual patterns of behavior,
@@ -60,6 +61,7 @@ For more information about those properties, see
   "by_field_name" : "process"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `time_of_day` function in a detector in your job, it
 models when events occur throughout a day for each process. It detects when an
@@ -91,6 +93,7 @@ For more information about those properties, see
   "over_field_name" : "workstation"
 }
 --------------------------------------------------
+// NOTCONSOLE
 
 If you use this `time_of_week` function in a detector in your job, it
 models when events occur throughout the week for each `eventcode`. It detects

+ 2 - 1
x-pack/docs/en/ml/populations.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-configuring-pop]]
-=== Performing Population Analysis
+=== Performing population analysis
 
 Entities or events in your data can be considered anomalous when:
 

+ 6 - 5
x-pack/docs/en/ml/stopping-ml.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[stopping-ml]]
-== Stopping Machine Learning
+== Stopping machine learning
 
 An orderly shutdown of {ml} ensures that:
 
@@ -24,10 +25,10 @@ request stops the `feed1` {dfeed}:
 
 [source,js]
 --------------------------------------------------
-POST _xpack/ml/datafeeds/feed1/_stop
+POST _xpack/ml/datafeeds/datafeed-total-requests/_stop
 --------------------------------------------------
 // CONSOLE
-// TEST[skip:todo]
+// TEST[setup:server_metrics_startdf]
 
 NOTE: You must have `manage_ml`, or `manage` cluster privileges to stop {dfeeds}.
 For more information, see <<security-privileges>>.
@@ -63,10 +64,10 @@ example, the following request closes the `job1` job:
 
 [source,js]
 --------------------------------------------------
-POST _xpack/ml/anomaly_detectors/job1/_close
+POST _xpack/ml/anomaly_detectors/total-requests/_close
 --------------------------------------------------
 // CONSOLE
-// TEST[skip:todo]
+// TEST[setup:server_metrics_openjob]
 
 NOTE: You must have `manage_ml`, or `manage` cluster privileges to stop {dfeeds}.
 For more information, see <<security-privileges>>.

+ 2 - 8
x-pack/docs/en/ml/transforms.asciidoc

@@ -1,5 +1,6 @@
+[role="xpack"]
 [[ml-configuring-transform]]
-=== Transforming Data With Script Fields
+=== Transforming data with script fields
 
 If you use {dfeeds}, you can add scripts to transform your data before
 it is analyzed. {dfeeds-cap} contain an optional `script_fields` property, where
@@ -602,10 +603,3 @@ The preview {dfeed} API returns the following results, which show that
 ]
 ----------------------------------
 // TESTRESPONSE
-
-////
-==== Configuring Script Fields in {dfeeds-cap}
-
-//TO-DO: Add Kibana steps from
-//https://github.com/elastic/prelert-legacy/wiki/Transforming-data-with-script_fields#transforming-geo_point-data-to-a-workable-string-format
-////