Browse Source

[DOCS] Adds description of analysis_stats object and its properties to GET DFA stats API docs (#53881)

Co-authored-by: Valeriy Khakhutskyy <1292899+valeriy42@users.noreply.github.com>
Co-authored-by: Lisa Cawley <lcawley@elastic.co>
István Zoltán Szabó 5 years ago
parent
commit
85d9b34dc5

+ 1 - 2
docs/reference/ml/df-analytics/apis/get-dfanalytics-stats.asciidoc

@@ -35,7 +35,6 @@ privileges:
   
 For more information, see <<security-privileges>> and <<built-in-roles>>.
 
-
 [[ml-get-dfanalytics-stats-path-params]]
 ==== {api-path-parms-title}
 
@@ -59,7 +58,7 @@ include::{docdir}/ml/ml-shared.asciidoc[tag=from]
 (Optional, integer) 
 include::{docdir}/ml/ml-shared.asciidoc[tag=size]
 
-
+[role="child_attributes"]
 [[ml-get-dfanalytics-stats-response-body]]
 ==== {api-response-body-title}
 

+ 329 - 0
docs/reference/ml/ml-shared.asciidoc

@@ -509,6 +509,335 @@ tag::data-frame-analytics-stats[]
 An array of statistics objects for {dfanalytics-jobs}, which are
 sorted by the `id` value in ascending order.
 
+//Begin analysis_stats
+`analysis_stats`::
+(object)
+An object containing statistical data about the analysis.
++
+.Properties of `analysis_stats`
+[%collapsible%open]
+====
+//Begin classification_stats
+`classification_stats`:::
+(object)
+An object containing statistical data about the {classanalysis}.
++
+.Properties of `classification_stats`
+[%collapsible%open]
+=====
+//Begin class_hyperparameters
+`hyperparameters`::::
+(object)
+An object containing the parameters of the {classanalysis}.
++
+.Properties of `hyperparameters`
+[%collapsible%open]
+======
+tag::dfas-alpha[]
+`alpha`::::
+(double)
+Regularization factor to penalize deeper trees when training decision trees.
+end::dfas-alpha[]
+
+`class_assignment_objective`::::
+(string)
+Defines whether class assignment maximizes the accuracy or the minimum recall 
+metric. Possible values are `maximize_accuracy` and `maximize_minimum_recall`.
+
+tag::dfas-downsample-factor[]
+`downsample_factor`::::
+(double)
+The value of the downsample factor.
+end::dfas-downsample-factor[]
+
+tag::dfas-eta[]
+`eta`::::
+(double)
+The value of the eta hyperparameter.
+end::dfas-eta[]
+
+tag::dfas-eta-growth[]
+`eta_growth_rate_per_tree`::::
+(double)
+Specifies the rate at which the `eta` increases for each new tree that is added to the 
+forest. For example, a rate of `1.05` increases `eta` by 5%.
+end::dfas-eta-growth[]
+
+tag::dfas-feature-bag-fraction[]
+`feature_bag_fraction`::::
+(double)
+The fraction of features that is used when selecting a random bag for each 
+candidate split.
+end::dfas-feature-bag-fraction[]
+
+tag::dfas-gamma[]
+`gamma`::::
+(double)
+Regularization factor to penalize trees with large numbers of nodes.
+end::dfas-gamma[]
+
+tag::dfas-lambda[]
+`lambda`::::
+(double)
+Regularization factor to penalize large leaf weights.
+end::dfas-lambda[]
+
+tag::dfas-max-attempts[]
+`max_attempts_to_add_tree`::::
+(integer)
+If the algorithm fails to determine a non-trivial tree (more than a single 
+leaf), this parameter determines how many of such consecutive failures are 
+tolerated. Once the number of attempts exceeds the threshold, the forest 
+training stops.
+end::dfas-max-attempts[]
+
+tag::dfas-max-optimization-rounds[]
+`max_optimization_rounds_per_hyperparameter`::::
+(integer)
+A multiplier responsible for determining the maximum number of 
+hyperparameter optimization steps in the Bayesian optimization procedure. 
+The maximum number of steps is determined based on the number of undefined hyperparameters 
+times the maximum optimization rounds per hyperparameter.
+end::dfas-max-optimization-rounds[]
+
+tag::dfas-max-trees[]
+`max_trees`::::
+(integer)
+The maximum number of trees in the forest.
+end::dfas-max-trees[]
+
+tag::dfas-num-folds[]
+`num_folds`::::
+(integer)
+The maximum number of folds for the cross-validation procedure.
+end::dfas-num-folds[]
+
+tag::dfas-num-splits[]
+`num_splits_per_feature`::::
+(integer)
+Determines the maximum number of splits for every feature that can occur in a 
+decision tree when the tree is trained.
+end::dfas-num-splits[]
+
+tag::dfas-soft-limit[]
+`soft_tree_depth_limit`::::
+(double)
+Tree depth limit is used for calculating the tree depth penalty. This is a soft 
+limit, it can be exceeded.
+end::dfas-soft-limit[]
+
+tag::dfas-soft-tolerance[]
+`soft_tree_depth_tolerance`::::
+(double)
+Tree depth tolerance is used for calculating the tree depth penalty. This is a 
+soft limit, it can be exceeded.
+end::dfas-soft-tolerance[]
+======
+//End class_hyperparameters
+
+tag::dfas-iteration[]
+`iteration`::::
+(integer)
+The number of iterations on the analysis.
+end::dfas-iteration[]
+
+tag::dfas-timestamp[]
+`timestamp`::::
+(date)
+The timestamp when the statistics were reported in milliseconds since the epoch.
+end::dfas-timestamp[]
+
+//Begin class_timing_stats
+tag::dfas-timing-stats[]
+`timing_stats`::::
+(object)
+An object containing time statistics about the {dfanalytics-job}.
+end::dfas-timing-stats[]
++
+.Properties of `timing_stats`
+[%collapsible%open]
+======
+tag::dfas-timing-stats-elapsed[]
+`elapsed_time`::::
+(integer)
+Runtime of the analysis in milliseconds.
+end::dfas-timing-stats-elapsed[]
+
+tag::dfas-timing-stats-iteration[]
+`iteration_time`::::
+(integer)
+Runtime of the latest iteration of the analysis in milliseconds.
+end::dfas-timing-stats-iteration[]
+======
+//End class_timing_stats
+
+//Begin class_validation_loss
+tag::dfas-validation-loss[]
+`validation_loss`::::
+(object)
+An object containing information about validation loss.
+end::dfas-validation-loss[]
++
+.Properties of `validation_loss`
+[%collapsible%open]
+======
+tag::dfas-validation-loss-type[]
+`loss_type`::::
+(string)
+The type of the loss metric. For example, `binomial_logistic`.
+end::dfas-validation-loss-type[]
+
+tag::dfas-validation-loss-fold[]
+`fold_values`::::
+(array of strings)
+Validation loss values for every added decision tree during the forest growing 
+procedure.
+end::dfas-validation-loss-fold[]
+======
+//End class_validation_loss
+=====
+//End classification_stats
+
+//Begin outlier_detection_stats
+`outlier_detection_stats`:::
+(object)
+An object containing statistical data about the {oldetection} job.
++
+.Properties of `outlier_detection_stats`
+[%collapsible%open]
+=====
+//Begin parameters
+`parameters`::::
+(object)
+The list of job parameters specified by the user or determined by algorithmic 
+heuristics.
++
+.Properties of `parameters`
+[%collapsible%open]
+======
+`compute_feature_influence`::::
+(boolean)
+If true, feature influence calculation is enabled.
+
+`feature_influence_threshold`::::
+(double)
+The minimum {olscore} that a document needs to have to calculate its feature 
+influence score.
+
+`method`::::
+(string)
+The method that {oldetection} uses. Possible values are `lof`, `ldof`, 
+`distance_kth_nn`, `distance_knn`, and `ensemble`.
+
+`n_neighbors`::::
+(integer)
+The value for how many nearest neighbors each method of {oldetection} uses to 
+calculate its outlier score.
+
+`outlier_fraction`::::
+(double)
+The proportion of the data set that is assumed to be outlying prior to 
+{oldetection}.
+
+`standardization_enabled`::::
+(boolean)
+If true, then the following operation is performed on the columns before 
+computing {olscores}: (x_i - mean(x_i)) / sd(x_i).
+======
+//End parameters
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
+
+//Begin od_timing_stats
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
++
+.Property of `timing_stats`
+[%collapsible%open]
+======
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
+======
+//End od_timing_stats
+=====
+//End outlier_detection_stats
+
+//Begin regression_stats
+`regression_stats`:::
+(object)
+An object containing statistical data about the {reganalysis}.
++
+.Properties of `regression_stats`
+[%collapsible%open]
+=====
+//Begin reg_hyperparameters
+`hyperparameters`::::
+(object)
+An object containing the parameters of the {reganalysis}.
++
+.Properties of `hyperparameters`
+[%collapsible%open]
+======
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-alpha]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-downsample-factor]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta-growth]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-feature-bag-fraction]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-gamma]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-lambda]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-attempts]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-optimization-rounds]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-trees]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-folds]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-splits]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-limit]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-tolerance]
+======
+//End reg_hyperparameters
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-iteration]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
+
+//Begin reg_timing_stats
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
++
+.Propertis of `timing_stats`
+[%collapsible%open]
+======
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-iteration]
+======
+//End reg_timing_stats
+
+//Begin reg_validation_loss
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss]
++
+.Properties of `validation_loss`
+[%collapsible%open]
+======
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-type]
+
+include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-fold]
+======
+//End reg_validation_loss
+=====
+//End regression_stats
+====
+//End analysis_stats
+
 `assignment_explanation`:::
 (string)
 For running jobs only, contains messages relating to the selection of a node to