|
@@ -0,0 +1,182 @@
|
|
|
+/*
|
|
|
+ * Copyright 2001-2014 Stephen Colebourne
|
|
|
+ *
|
|
|
+ * Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+ * you may not use this file except in compliance with the License.
|
|
|
+ * You may obtain a copy of the License at
|
|
|
+ *
|
|
|
+ * http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+ *
|
|
|
+ * Unless required by applicable law or agreed to in writing, software
|
|
|
+ * distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+ * See the License for the specific language governing permissions and
|
|
|
+ * limitations under the License.
|
|
|
+ */
|
|
|
+package org.elasticsearch.common.time;
|
|
|
+
|
|
|
+/**
|
|
|
+ * This class has been copied from different locations within the joda time package, as
|
|
|
+ * these methods fast when used for rounding, as they do not require conversion to java
|
|
|
+ * time objects
|
|
|
+ *
|
|
|
+ * This code has been copied from jodatime 2.10.1
|
|
|
+ * The source can be found at https://github.com/JodaOrg/joda-time/tree/v2.10.1
|
|
|
+ *
|
|
|
+ * See following methods have been copied (along with required helper variables)
|
|
|
+ *
|
|
|
+ * - org.joda.time.chrono.GregorianChronology.calculateFirstDayOfYearMillis(int year)
|
|
|
+ * - org.joda.time.chrono.BasicChronology.getYear(int year)
|
|
|
+ * - org.joda.time.chrono.BasicGJChronology.getMonthOfYear(long utcMillis, int year)
|
|
|
+ * - org.joda.time.chrono.BasicGJChronology.getTotalMillisByYearMonth(int year, int month)
|
|
|
+ */
|
|
|
+class DateUtilsRounding {
|
|
|
+
|
|
|
+ private static final int DAYS_0000_TO_1970 = 719527;
|
|
|
+ private static final int MILLIS_PER_DAY = 86_400_000;
|
|
|
+ private static final long MILLIS_PER_YEAR = 31556952000L;
|
|
|
+
|
|
|
+ // see org.joda.time.chrono.BasicGJChronology
|
|
|
+ private static final long[] MIN_TOTAL_MILLIS_BY_MONTH_ARRAY;
|
|
|
+ private static final long[] MAX_TOTAL_MILLIS_BY_MONTH_ARRAY;
|
|
|
+ private static final int[] MIN_DAYS_PER_MONTH_ARRAY = {
|
|
|
+ 31,28,31,30,31,30,31,31,30,31,30,31
|
|
|
+ };
|
|
|
+ private static final int[] MAX_DAYS_PER_MONTH_ARRAY = {
|
|
|
+ 31,29,31,30,31,30,31,31,30,31,30,31
|
|
|
+ };
|
|
|
+
|
|
|
+ static {
|
|
|
+ MIN_TOTAL_MILLIS_BY_MONTH_ARRAY = new long[12];
|
|
|
+ MAX_TOTAL_MILLIS_BY_MONTH_ARRAY = new long[12];
|
|
|
+
|
|
|
+ long minSum = 0;
|
|
|
+ long maxSum = 0;
|
|
|
+ for (int i = 0; i < 11; i++) {
|
|
|
+ long millis = MIN_DAYS_PER_MONTH_ARRAY[i]
|
|
|
+ * (long) MILLIS_PER_DAY;
|
|
|
+ minSum += millis;
|
|
|
+ MIN_TOTAL_MILLIS_BY_MONTH_ARRAY[i + 1] = minSum;
|
|
|
+
|
|
|
+ millis = MAX_DAYS_PER_MONTH_ARRAY[i]
|
|
|
+ * (long) MILLIS_PER_DAY;
|
|
|
+ maxSum += millis;
|
|
|
+ MAX_TOTAL_MILLIS_BY_MONTH_ARRAY[i + 1] = maxSum;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * calculates the first day of a year in milliseconds since the epoch (assuming UTC)
|
|
|
+ *
|
|
|
+ * @param year the year
|
|
|
+ * @return the milliseconds since the epoch of the first of january at midnight of the specified year
|
|
|
+ */
|
|
|
+ // see org.joda.time.chrono.GregorianChronology.calculateFirstDayOfYearMillis
|
|
|
+ static long utcMillisAtStartOfYear(final int year) {
|
|
|
+ // Initial value is just temporary.
|
|
|
+ int leapYears = year / 100;
|
|
|
+ if (year < 0) {
|
|
|
+ // Add 3 before shifting right since /4 and >>2 behave differently
|
|
|
+ // on negative numbers. When the expression is written as
|
|
|
+ // (year / 4) - (year / 100) + (year / 400),
|
|
|
+ // it works for both positive and negative values, except this optimization
|
|
|
+ // eliminates two divisions.
|
|
|
+ leapYears = ((year + 3) >> 2) - leapYears + ((leapYears + 3) >> 2) - 1;
|
|
|
+ } else {
|
|
|
+ leapYears = (year >> 2) - leapYears + (leapYears >> 2);
|
|
|
+ if (isLeapYear(year)) {
|
|
|
+ leapYears--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return (year * 365L + (leapYears - DAYS_0000_TO_1970)) * MILLIS_PER_DAY; // millis per day
|
|
|
+ }
|
|
|
+
|
|
|
+ private static boolean isLeapYear(final int year) {
|
|
|
+ return ((year & 3) == 0) && ((year % 100) != 0 || (year % 400) == 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ private static final long AVERAGE_MILLIS_PER_YEAR_DIVIDED_BY_TWO = MILLIS_PER_YEAR / 2;
|
|
|
+ private static final long APPROX_MILLIS_AT_EPOCH_DIVIDED_BY_TWO = (1970L * MILLIS_PER_YEAR) / 2;
|
|
|
+
|
|
|
+ // see org.joda.time.chrono.BasicChronology
|
|
|
+ static int getYear(final long utcMillis) {
|
|
|
+ // Get an initial estimate of the year, and the millis value that
|
|
|
+ // represents the start of that year. Then verify estimate and fix if
|
|
|
+ // necessary.
|
|
|
+
|
|
|
+ // Initial estimate uses values divided by two to avoid overflow.
|
|
|
+ long unitMillis = AVERAGE_MILLIS_PER_YEAR_DIVIDED_BY_TWO;
|
|
|
+ long i2 = (utcMillis >> 1) + APPROX_MILLIS_AT_EPOCH_DIVIDED_BY_TWO;
|
|
|
+ if (i2 < 0) {
|
|
|
+ i2 = i2 - unitMillis + 1;
|
|
|
+ }
|
|
|
+ int year = (int) (i2 / unitMillis);
|
|
|
+
|
|
|
+ long yearStart = utcMillisAtStartOfYear(year);
|
|
|
+ long diff = utcMillis - yearStart;
|
|
|
+
|
|
|
+ if (diff < 0) {
|
|
|
+ year--;
|
|
|
+ } else if (diff >= MILLIS_PER_DAY * 365L) {
|
|
|
+ // One year may need to be added to fix estimate.
|
|
|
+ long oneYear;
|
|
|
+ if (isLeapYear(year)) {
|
|
|
+ oneYear = MILLIS_PER_DAY * 366L;
|
|
|
+ } else {
|
|
|
+ oneYear = MILLIS_PER_DAY * 365L;
|
|
|
+ }
|
|
|
+
|
|
|
+ yearStart += oneYear;
|
|
|
+
|
|
|
+ if (yearStart <= utcMillis) {
|
|
|
+ // Didn't go too far, so actually add one year.
|
|
|
+ year++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return year;
|
|
|
+ }
|
|
|
+
|
|
|
+ // see org.joda.time.chrono.BasicGJChronology
|
|
|
+ static int getMonthOfYear(final long utcMillis, final int year) {
|
|
|
+ // Perform a binary search to get the month. To make it go even faster,
|
|
|
+ // compare using ints instead of longs. The number of milliseconds per
|
|
|
+ // year exceeds the limit of a 32-bit int's capacity, so divide by
|
|
|
+ // 1024. No precision is lost (except time of day) since the number of
|
|
|
+ // milliseconds per day contains 1024 as a factor. After the division,
|
|
|
+ // the instant isn't measured in milliseconds, but in units of
|
|
|
+ // (128/125)seconds.
|
|
|
+
|
|
|
+ int i = (int)((utcMillis - utcMillisAtStartOfYear(year)) >> 10);
|
|
|
+
|
|
|
+ // There are 86400000 milliseconds per day, but divided by 1024 is
|
|
|
+ // 84375. There are 84375 (128/125)seconds per day.
|
|
|
+
|
|
|
+ return
|
|
|
+ (isLeapYear(year))
|
|
|
+ ? ((i < 182 * 84375)
|
|
|
+ ? ((i < 91 * 84375)
|
|
|
+ ? ((i < 31 * 84375) ? 1 : (i < 60 * 84375) ? 2 : 3)
|
|
|
+ : ((i < 121 * 84375) ? 4 : (i < 152 * 84375) ? 5 : 6))
|
|
|
+ : ((i < 274 * 84375)
|
|
|
+ ? ((i < 213 * 84375) ? 7 : (i < 244 * 84375) ? 8 : 9)
|
|
|
+ : ((i < 305 * 84375) ? 10 : (i < 335 * 84375) ? 11 : 12)))
|
|
|
+ : ((i < 181 * 84375)
|
|
|
+ ? ((i < 90 * 84375)
|
|
|
+ ? ((i < 31 * 84375) ? 1 : (i < 59 * 84375) ? 2 : 3)
|
|
|
+ : ((i < 120 * 84375) ? 4 : (i < 151 * 84375) ? 5 : 6))
|
|
|
+ : ((i < 273 * 84375)
|
|
|
+ ? ((i < 212 * 84375) ? 7 : (i < 243 * 84375) ? 8 : 9)
|
|
|
+ : ((i < 304 * 84375) ? 10 : (i < 334 * 84375) ? 11 : 12)));
|
|
|
+ }
|
|
|
+
|
|
|
+ // see org.joda.time.chrono.BasicGJChronology
|
|
|
+ static long getTotalMillisByYearMonth(final int year, final int month) {
|
|
|
+ if (isLeapYear(year)) {
|
|
|
+ return MAX_TOTAL_MILLIS_BY_MONTH_ARRAY[month - 1];
|
|
|
+ } else {
|
|
|
+ return MIN_TOTAL_MILLIS_BY_MONTH_ARRAY[month - 1];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|