Browse Source

[DOCS] Updates get trained models API docs (#79372)

* [DOCS] Updates get trained models API docs.

* [DOCS] Reviews get trained models related definitions in ml-shared.
István Zoltán Szabó 4 years ago
parent
commit
c879db98b1

+ 7 - 8
docs/reference/ml/df-analytics/apis/get-trained-models.asciidoc

@@ -102,7 +102,7 @@ ascending order.
 ====
 ====
 `created_by`:::
 `created_by`:::
 (string)
 (string)
-Information on the creator of the trained model.
+The creator of the trained model.
 
 
 `create_time`:::
 `create_time`:::
 (<<time-units,time units>>)
 (<<time-units,time units>>)
@@ -110,11 +110,10 @@ The time when the trained model was created.
 
 
 `default_field_map` :::
 `default_field_map` :::
 (object)
 (object)
-A string to string object that contains the default field map to use
-when inferring against the model. For example, data frame analytics
-may train the model on a specific multi-field `foo.keyword`.
-The analytics job would then supply a default field map entry for
-`"foo" : "foo.keyword"`.
+A string object that contains the default field map to use when inferring 
+against the model. For example, {dfanalytics} may train the model on a specific 
+multi-field `foo.keyword`. The analytics job would then supply a default field 
+map entry for `"foo" : "foo.keyword"`.
 +
 +
 Any field map described in the inference configuration takes precedence.
 Any field map described in the inference configuration takes precedence.
 
 
@@ -133,8 +132,8 @@ The estimated number of operations to use the trained model.
 `inference_config`:::
 `inference_config`:::
 (object)
 (object)
 The default configuration for inference. This can be either a `regression`
 The default configuration for inference. This can be either a `regression`
-or `classification` configuration. It must match the underlying
-`definition.trained_model`'s `target_type`.
+or `classification` configuration. It must match the `target_type` of the 
+underlying `definition.trained_model`.
 +
 +
 .Properties of `inference_config`
 .Properties of `inference_config`
 [%collapsible%open]
 [%collapsible%open]

+ 23 - 24
docs/reference/ml/ml-shared.asciidoc

@@ -897,8 +897,8 @@ end::inference-config-classification-num-top-classes[]
 
 
 tag::inference-config-classification-num-top-feature-importance-values[]
 tag::inference-config-classification-num-top-feature-importance-values[]
 Specifies the maximum number of
 Specifies the maximum number of
-{ml-docs}/ml-feature-importance.html[{feat-imp}] values per document. By
-default, it is zero and no {feat-imp} calculation occurs.
+{ml-docs}/ml-feature-importance.html[{feat-imp}] values per document. Defaults 
+to 0 which means no {feat-imp} calculation occurs.
 end::inference-config-classification-num-top-feature-importance-values[]
 end::inference-config-classification-num-top-feature-importance-values[]
 
 
 tag::inference-config-classification-top-classes-results-field[]
 tag::inference-config-classification-top-classes-results-field[]
@@ -908,7 +908,7 @@ end::inference-config-classification-top-classes-results-field[]
 
 
 tag::inference-config-classification-prediction-field-type[]
 tag::inference-config-classification-prediction-field-type[]
 Specifies the type of the predicted field to write.
 Specifies the type of the predicted field to write.
-Acceptable values are: `string`, `number`, `boolean`. When `boolean` is provided
+Valid values are: `string`, `number`, `boolean`. When `boolean` is provided 
 `1.0` is transformed to `true` and `0.0` to `false`.
 `1.0` is transformed to `true` and `0.0` to `false`.
 end::inference-config-classification-prediction-field-type[]
 end::inference-config-classification-prediction-field-type[]
 
 
@@ -921,8 +921,8 @@ BERT-style tokenization is to be performed with the enclosed settings.
 end::inference-config-nlp-tokenization-bert[]
 end::inference-config-nlp-tokenization-bert[]
 
 
 tag::inference-config-nlp-tokenization-bert-do-lower-case[]
 tag::inference-config-nlp-tokenization-bert-do-lower-case[]
-Should the tokenization lower case the text sequence when building
-the tokens.
+Specifies if the tokenization lower case the text sequence when building the 
+tokens.
 end::inference-config-nlp-tokenization-bert-do-lower-case[]
 end::inference-config-nlp-tokenization-bert-do-lower-case[]
 
 
 tag::inference-config-nlp-tokenization-bert-with-special-tokens[]
 tag::inference-config-nlp-tokenization-bert-with-special-tokens[]
@@ -935,29 +935,29 @@ Tokenize with special tokens. The tokens typically included in BERT-style tokeni
 end::inference-config-nlp-tokenization-bert-with-special-tokens[]
 end::inference-config-nlp-tokenization-bert-with-special-tokens[]
 
 
 tag::inference-config-nlp-tokenization-bert-max-sequence-length[]
 tag::inference-config-nlp-tokenization-bert-max-sequence-length[]
-The maximum number of tokens allowed to be output by the tokenizer.
+Specifies the maximum number of tokens allowed to be output by the tokenizer. 
 The default for BERT-style tokenization is `512`.
 The default for BERT-style tokenization is `512`.
 end::inference-config-nlp-tokenization-bert-max-sequence-length[]
 end::inference-config-nlp-tokenization-bert-max-sequence-length[]
 
 
 tag::inference-config-nlp-vocabulary[]
 tag::inference-config-nlp-vocabulary[]
-The configuration for retreiving the model's vocabulary. The vocabulary is then
-used at inference time. This information is usually provided automatically by
-storing vocabulary in a known, internally managed index.
+The configuration for retreiving the vocabulary of the model. The vocabulary is 
+then used at inference time. This information is usually provided automatically 
+by storing vocabulary in a known, internally managed index.
 end::inference-config-nlp-vocabulary[]
 end::inference-config-nlp-vocabulary[]
 
 
 tag::inference-config-nlp-fill-mask[]
 tag::inference-config-nlp-fill-mask[]
-Configuration for a fill_mask NLP task. The fill_mask task works with models
-optimized for a fill mask action. For example, for BERT models, the following
-text may be provided: "The capital of France is [MASK].". The response indicates
-the value most likely to replace `[MASK]`. In this instance, the
-most probable token is `paris`.
+Configuration for a fill_mask natural language processing (NLP) task. The 
+fill_mask task works with models optimized for a fill mask action. For example, 
+for BERT models, the following text may be provided: "The capital of France is 
+[MASK].". The response indicates the value most likely to replace `[MASK]`. In 
+this instance, the most probable token is `paris`.
 end::inference-config-nlp-fill-mask[]
 end::inference-config-nlp-fill-mask[]
 
 
 tag::inference-config-ner[]
 tag::inference-config-ner[]
 Configures a named entity recognition (NER) task. NER is a special case of token
 Configures a named entity recognition (NER) task. NER is a special case of token
 classification. Each token in the sequence is classified according to the
 classification. Each token in the sequence is classified according to the
 provided classification labels. Currently, the NER task requires the
 provided classification labels. Currently, the NER task requires the
-`classification_labels` Inside-Outside-Beginning formatted labels. Only
+`classification_labels` Inside-Outside-Beginning (IOB) formatted labels. Only
 person, organization, location, and miscellaneous are supported.
 person, organization, location, and miscellaneous are supported.
 end::inference-config-ner[]
 end::inference-config-ner[]
 
 
@@ -977,8 +977,8 @@ end::inference-config-text-classification[]
 tag::inference-config-text-embedding[]
 tag::inference-config-text-embedding[]
 Text embedding takes an input sequence and transforms it into a vector of
 Text embedding takes an input sequence and transforms it into a vector of
 numbers. These embeddings capture not simply tokens, but semantic meanings and
 numbers. These embeddings capture not simply tokens, but semantic meanings and
-context. These embeddings can then be used in a <<dense-vector,dense vector>>
-field for powerful insights.
+context. These embeddings can be used in a <<dense-vector,dense vector>> field 
+for powerful insights.
 end::inference-config-text-embedding[]
 end::inference-config-text-embedding[]
 
 
 tag::inference-config-regression-num-top-feature-importance-values[]
 tag::inference-config-regression-num-top-feature-importance-values[]
@@ -1005,8 +1005,8 @@ it is possible to adjust the labels to classify. This makes this type of model
 and task exceptionally flexible.
 and task exceptionally flexible.
 +
 +
 --
 --
-If consistently classifying the same labels, it may be better to use a fine turned
-text classification model.
+If consistently classifying the same labels, it may be better to use a 
+fine-tuned text classification model.
 --
 --
 end::inference-config-zero-shot-classification[]
 end::inference-config-zero-shot-classification[]
 
 
@@ -1021,9 +1021,11 @@ end::inference-config-zero-shot-classification-classification-labels[]
 
 
 tag::inference-config-zero-shot-classification-hypothesis-template[]
 tag::inference-config-zero-shot-classification-hypothesis-template[]
 This is the template used when tokenizing the sequences for classification.
 This is the template used when tokenizing the sequences for classification.
-
++
+--
 The labels replace the `{}` value in the text. The default value is:
 The labels replace the `{}` value in the text. The default value is:
 `This example is {}.`
 `This example is {}.`
+--
 end::inference-config-zero-shot-classification-hypothesis-template[]
 end::inference-config-zero-shot-classification-hypothesis-template[]
 
 
 tag::inference-config-zero-shot-classification-labels[]
 tag::inference-config-zero-shot-classification-labels[]
@@ -1033,11 +1035,8 @@ end::inference-config-zero-shot-classification-labels[]
 
 
 tag::inference-config-zero-shot-classification-multi-label[]
 tag::inference-config-zero-shot-classification-multi-label[]
 Indicates if more than one `true` label is possible given the input.
 Indicates if more than one `true` label is possible given the input.
-
 This is useful when labeling text that could pertain to more than one of the
 This is useful when labeling text that could pertain to more than one of the
-input labels.
-
-Defaults to `false`.
+input labels. Defaults to `false`.
 end::inference-config-zero-shot-classification-multi-label[]
 end::inference-config-zero-shot-classification-multi-label[]
 
 
 tag::inference-metadata-feature-importance-feature-name[]
 tag::inference-metadata-feature-importance-feature-name[]