|
|
@@ -4,84 +4,379 @@
|
|
|
<titleabbrev>Word delimiter</titleabbrev>
|
|
|
++++
|
|
|
|
|
|
-Named `word_delimiter`, it Splits words into subwords and performs
|
|
|
-optional transformations on subword groups. Words are split into
|
|
|
-subwords with the following rules:
|
|
|
+[WARNING]
|
|
|
+====
|
|
|
+We recommend using the
|
|
|
+<<analysis-word-delimiter-graph-tokenfilter,`word_delimiter_graph`>> instead of
|
|
|
+the `word_delimiter` filter.
|
|
|
|
|
|
-* split on intra-word delimiters (by default, all non alpha-numeric
|
|
|
-characters): "Wi-Fi" -> "Wi", "Fi"
|
|
|
-* split on case transitions: "PowerShot" -> "Power", "Shot"
|
|
|
-* split on letter-number transitions: "SD500" -> "SD", "500"
|
|
|
-* leading and trailing intra-word delimiters on each subword are
|
|
|
-ignored: "//hello---there, 'dude'" -> "hello", "there", "dude"
|
|
|
-* trailing "'s" are removed for each subword: "O'Neil's" -> "O", "Neil"
|
|
|
+The `word_delimiter` filter can produce invalid token graphs. See
|
|
|
+<<analysis-word-delimiter-graph-differences>>.
|
|
|
|
|
|
-Parameters include:
|
|
|
+The `word_delimiter` filter also uses Lucene's
|
|
|
+{lucene-analysis-docs}/miscellaneous/WordDelimiterFilter.html[WordDelimiterFilter],
|
|
|
+which is marked as deprecated.
|
|
|
+====
|
|
|
|
|
|
-`generate_word_parts`::
|
|
|
- If `true` causes parts of words to be
|
|
|
- generated: "Power-Shot", "(Power,Shot)" -> "Power" "Shot". Defaults to `true`.
|
|
|
+Splits tokens at non-alphanumeric characters. The `word_delimiter` filter
|
|
|
+also performs optional token normalization based on a set of rules. By default,
|
|
|
+the filter uses the following rules:
|
|
|
|
|
|
-`generate_number_parts`::
|
|
|
- If `true` causes number subwords to be
|
|
|
- generated: "500-42" -> "500" "42". Defaults to `true`.
|
|
|
+* Split tokens at non-alphanumeric characters.
|
|
|
+ The filter uses these characters as delimiters.
|
|
|
+ For example: `Super-Duper` -> `Super`, `Duper`
|
|
|
+* Remove leading or trailing delimiters from each token.
|
|
|
+ For example: `XL---42+'Autocoder'` -> `XL`, `42`, `Autocoder`
|
|
|
+* Split tokens at letter case transitions.
|
|
|
+ For example: `PowerShot` -> `Power`, `Shot`
|
|
|
+* Split tokens at letter-number transitions.
|
|
|
+ For example: `XL500` -> `XL`, `500`
|
|
|
+* Remove the English possessive (`'s`) from the end of each token.
|
|
|
+ For example: `Neil's` -> `Neil`
|
|
|
|
|
|
-`catenate_words`::
|
|
|
- If `true` causes maximum runs of word parts to be
|
|
|
- catenated: "wi-fi" -> "wifi". Defaults to `false`.
|
|
|
+[TIP]
|
|
|
+====
|
|
|
+The `word_delimiter` filter was designed to remove punctuation from complex
|
|
|
+identifiers, such as product IDs or part numbers. For these use cases, we
|
|
|
+recommend using the `word_delimiter` filter with the
|
|
|
+<<analysis-keyword-tokenizer,`keyword`>> tokenizer.
|
|
|
|
|
|
-`catenate_numbers`::
|
|
|
- If `true` causes maximum runs of number parts to
|
|
|
- be catenated: "500-42" -> "50042". Defaults to `false`.
|
|
|
+Avoid using the `word_delimiter` filter to split hyphenated words, such as
|
|
|
+`wi-fi`. Because users often search for these words both with and without
|
|
|
+hyphens, we recommend using the
|
|
|
+<<analysis-synonym-graph-tokenfilter,`synonym_graph`>> filter instead.
|
|
|
+====
|
|
|
+
|
|
|
+[[analysis-word-delimiter-tokenfilter-analyze-ex]]
|
|
|
+==== Example
|
|
|
+
|
|
|
+The following <<indices-analyze,analyze API>> request uses the
|
|
|
+`word_delimiter` filter to split `Neil's-Super-Duper-XL500--42+AutoCoder`
|
|
|
+into normalized tokens using the filter's default rules:
|
|
|
+
|
|
|
+[source,console]
|
|
|
+----
|
|
|
+GET /_analyze
|
|
|
+{
|
|
|
+ "tokenizer": "keyword",
|
|
|
+ "filter": [ "word_delimiter" ],
|
|
|
+ "text": "Neil's-Super-Duper-XL500--42+AutoCoder"
|
|
|
+}
|
|
|
+----
|
|
|
+
|
|
|
+The filter produces the following tokens:
|
|
|
+
|
|
|
+[source,txt]
|
|
|
+----
|
|
|
+[ Neil, Super, Duper, XL, 500, 42, Auto, Coder ]
|
|
|
+----
|
|
|
+
|
|
|
+////
|
|
|
+[source,console-result]
|
|
|
+----
|
|
|
+{
|
|
|
+ "tokens": [
|
|
|
+ {
|
|
|
+ "token": "Neil",
|
|
|
+ "start_offset": 0,
|
|
|
+ "end_offset": 4,
|
|
|
+ "type": "word",
|
|
|
+ "position": 0
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "token": "Super",
|
|
|
+ "start_offset": 7,
|
|
|
+ "end_offset": 12,
|
|
|
+ "type": "word",
|
|
|
+ "position": 1
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "token": "Duper",
|
|
|
+ "start_offset": 13,
|
|
|
+ "end_offset": 18,
|
|
|
+ "type": "word",
|
|
|
+ "position": 2
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "token": "XL",
|
|
|
+ "start_offset": 19,
|
|
|
+ "end_offset": 21,
|
|
|
+ "type": "word",
|
|
|
+ "position": 3
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "token": "500",
|
|
|
+ "start_offset": 21,
|
|
|
+ "end_offset": 24,
|
|
|
+ "type": "word",
|
|
|
+ "position": 4
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "token": "42",
|
|
|
+ "start_offset": 26,
|
|
|
+ "end_offset": 28,
|
|
|
+ "type": "word",
|
|
|
+ "position": 5
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "token": "Auto",
|
|
|
+ "start_offset": 29,
|
|
|
+ "end_offset": 33,
|
|
|
+ "type": "word",
|
|
|
+ "position": 6
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "token": "Coder",
|
|
|
+ "start_offset": 33,
|
|
|
+ "end_offset": 38,
|
|
|
+ "type": "word",
|
|
|
+ "position": 7
|
|
|
+ }
|
|
|
+ ]
|
|
|
+}
|
|
|
+----
|
|
|
+////
|
|
|
+
|
|
|
+[analysis-word-delimiter-tokenfilter-analyzer-ex]]
|
|
|
+==== Add to an analyzer
|
|
|
+
|
|
|
+The following <<indices-create-index,create index API>> request uses the
|
|
|
+`word_delimiter` filter to configure a new
|
|
|
+<<analysis-custom-analyzer,custom analyzer>>.
|
|
|
+
|
|
|
+[source,console]
|
|
|
+----
|
|
|
+PUT /my_index
|
|
|
+{
|
|
|
+ "settings": {
|
|
|
+ "analysis": {
|
|
|
+ "analyzer": {
|
|
|
+ "my_analyzer": {
|
|
|
+ "tokenizer": "keyword",
|
|
|
+ "filter": [ "word_delimiter" ]
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+----
|
|
|
+
|
|
|
+[WARNING]
|
|
|
+====
|
|
|
+Avoid using the `word_delimiter` filter with tokenizers that remove punctuation,
|
|
|
+such as the <<analysis-standard-tokenizer,`standard`>> tokenizer. This could
|
|
|
+prevent the `word_delimiter` filter from splitting tokens correctly. It can also
|
|
|
+interfere with the filter's configurable parameters, such as `catenate_all` or
|
|
|
+`preserve_original`. We recommend using the
|
|
|
+<<analysis-keyword-tokenizer,`keyword`>> or
|
|
|
+<<analysis-whitespace-tokenizer,`whitespace`>> tokenizer instead.
|
|
|
+====
|
|
|
+
|
|
|
+[[word-delimiter-tokenfilter-configure-parms]]
|
|
|
+==== Configurable parameters
|
|
|
|
|
|
`catenate_all`::
|
|
|
- If `true` causes all subword parts to be catenated:
|
|
|
- "wi-fi-4000" -> "wifi4000". Defaults to `false`.
|
|
|
++
|
|
|
+--
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter produces catenated tokens for chains of alphanumeric
|
|
|
+characters separated by non-alphabetic delimiters. For example:
|
|
|
+`super-duper-xl-500` -> [ `super`, **`superduperxl500`**, `duper`, `xl`, `500`
|
|
|
+]. Defaults to `false`.
|
|
|
|
|
|
-`split_on_case_change`::
|
|
|
- If `true` causes "PowerShot" to be two tokens;
|
|
|
- ("Power-Shot" remains two parts regards). Defaults to `true`.
|
|
|
+[WARNING]
|
|
|
+====
|
|
|
+When used for search analysis, catenated tokens can cause problems for the
|
|
|
+<<query-dsl-match-query-phrase,`match_phrase`>> query and other queries that
|
|
|
+rely on token position for matching. Avoid setting this parameter to `true` if
|
|
|
+you plan to use these queries.
|
|
|
+====
|
|
|
+--
|
|
|
+
|
|
|
+`catenate_numbers`::
|
|
|
++
|
|
|
+--
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter produces catenated tokens for chains of numeric characters
|
|
|
+separated by non-alphabetic delimiters. For example: `01-02-03` ->
|
|
|
+[ `01`, **`010203`**, `02`, `03` ]. Defaults to `false`.
|
|
|
+
|
|
|
+[WARNING]
|
|
|
+====
|
|
|
+When used for search analysis, catenated tokens can cause problems for the
|
|
|
+<<query-dsl-match-query-phrase,`match_phrase`>> query and other queries that
|
|
|
+rely on token position for matching. Avoid setting this parameter to `true` if
|
|
|
+you plan to use these queries.
|
|
|
+====
|
|
|
+--
|
|
|
+
|
|
|
+`catenate_words`::
|
|
|
++
|
|
|
+--
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter produces catenated tokens for chains of alphabetical
|
|
|
+characters separated by non-alphabetic delimiters. For example: `super-duper-xl`
|
|
|
+-> [ `super`, **`superduperxl`**, `duper`, `xl` ]. Defaults to `false`.
|
|
|
+
|
|
|
+[WARNING]
|
|
|
+====
|
|
|
+When used for search analysis, catenated tokens can cause problems for the
|
|
|
+<<query-dsl-match-query-phrase,`match_phrase`>> query and other queries that
|
|
|
+rely on token position for matching. Avoid setting this parameter to `true` if
|
|
|
+you plan to use these queries.
|
|
|
+====
|
|
|
+--
|
|
|
+
|
|
|
+`generate_number_parts`::
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter includes tokens consisting of only numeric characters in
|
|
|
+the output. If `false`, the filter excludes these tokens from the output.
|
|
|
+Defaults to `true`.
|
|
|
+
|
|
|
+`generate_word_parts`::
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter includes tokens consisting of only alphabetical characters
|
|
|
+in the output. If `false`, the filter excludes these tokens from the output.
|
|
|
+Defaults to `true`.
|
|
|
|
|
|
`preserve_original`::
|
|
|
- If `true` includes original words in subwords:
|
|
|
- "500-42" -> "500-42" "500" "42". Defaults to `false`.
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter includes the original version of any split tokens in the
|
|
|
+output. This original version includes non-alphanumeric delimiters. For example:
|
|
|
+`super-duper-xl-500` -> [ **`super-duper-xl-500`**, `super`, `duper`, `xl`,
|
|
|
+`500` ]. Defaults to `false`.
|
|
|
+
|
|
|
+`protected_words`::
|
|
|
+(Optional, array of strings)
|
|
|
+Array of tokens the filter won't split.
|
|
|
+
|
|
|
+`protected_words_path`::
|
|
|
++
|
|
|
+--
|
|
|
+(Optional, string)
|
|
|
+Path to a file that contains a list of tokens the filter won't split.
|
|
|
+
|
|
|
+This path must be absolute or relative to the `config` location, and the file
|
|
|
+must be UTF-8 encoded. Each token in the file must be separated by a line
|
|
|
+break.
|
|
|
+--
|
|
|
+
|
|
|
+`split_on_case_change`::
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter splits tokens at letter case transitions. For example:
|
|
|
+`camelCase` -> [ `camel`, `Case` ]. Defaults to `true`.
|
|
|
|
|
|
`split_on_numerics`::
|
|
|
- If `true` causes "j2se" to be three tokens; "j"
|
|
|
- "2" "se". Defaults to `true`.
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter splits tokens at letter-number transitions. For example:
|
|
|
+`j2se` -> [ `j`, `2`, `se` ]. Defaults to `true`.
|
|
|
|
|
|
`stem_english_possessive`::
|
|
|
- If `true` causes trailing "'s" to be
|
|
|
- removed for each subword: "O'Neil's" -> "O", "Neil". Defaults to `true`.
|
|
|
+(Optional, boolean)
|
|
|
+If `true`, the filter removes the English possessive (`'s`) from the end of each
|
|
|
+token. For example: `O'Neil's` -> [ `O`, `Neil` ]. Defaults to `true`.
|
|
|
|
|
|
-Advance settings include:
|
|
|
+`type_table`::
|
|
|
++
|
|
|
+--
|
|
|
+(Optional, array of strings)
|
|
|
+Array of custom type mappings for characters. This allows you to map
|
|
|
+non-alphanumeric characters as numeric or alphanumeric to avoid splitting on
|
|
|
+those characters.
|
|
|
|
|
|
-`protected_words`::
|
|
|
- A list of protected words from being delimiter.
|
|
|
- Either an array, or also can set `protected_words_path` which resolved
|
|
|
- to a file configured with protected words (one on each line).
|
|
|
- Automatically resolves to `config/` based location if exists.
|
|
|
+For example, the following array maps the plus (`+`) and hyphen (`-`) characters
|
|
|
+as alphanumeric, which means they won't be treated as delimiters:
|
|
|
|
|
|
-`type_table`::
|
|
|
- A custom type mapping table, for example (when configured
|
|
|
- using `type_table_path`):
|
|
|
-
|
|
|
-[source,type_table]
|
|
|
---------------------------------------------------
|
|
|
- # Map the $, %, '.', and ',' characters to DIGIT
|
|
|
- # This might be useful for financial data.
|
|
|
- $ => DIGIT
|
|
|
- % => DIGIT
|
|
|
- . => DIGIT
|
|
|
- \\u002C => DIGIT
|
|
|
-
|
|
|
- # in some cases you might not want to split on ZWJ
|
|
|
- # this also tests the case where we need a bigger byte[]
|
|
|
- # see http://en.wikipedia.org/wiki/Zero-width_joiner
|
|
|
- \\u200D => ALPHANUM
|
|
|
---------------------------------------------------
|
|
|
-
|
|
|
-NOTE: Using a tokenizer like the `standard` tokenizer may interfere with
|
|
|
-the `catenate_*` and `preserve_original` parameters, as the original
|
|
|
-string may already have lost punctuation during tokenization. Instead,
|
|
|
-you may want to use the `whitespace` tokenizer.
|
|
|
+`[ "+ => ALPHA", "- => ALPHA" ]`
|
|
|
+
|
|
|
+Supported types include:
|
|
|
+
|
|
|
+* `ALPHA` (Alphabetical)
|
|
|
+* `ALPHANUM` (Alphanumeric)
|
|
|
+* `DIGIT` (Numeric)
|
|
|
+* `LOWER` (Lowercase alphabetical)
|
|
|
+* `SUBWORD_DELIM` (Non-alphanumeric delimiter)
|
|
|
+* `UPPER` (Uppercase alphabetical)
|
|
|
+--
|
|
|
+
|
|
|
+`type_table_path`::
|
|
|
++
|
|
|
+--
|
|
|
+(Optional, string)
|
|
|
+Path to a file that contains custom type mappings for characters. This allows
|
|
|
+you to map non-alphanumeric characters as numeric or alphanumeric to avoid
|
|
|
+splitting on those characters.
|
|
|
+
|
|
|
+For example, the contents of this file may contain the following:
|
|
|
+
|
|
|
+[source,txt]
|
|
|
+----
|
|
|
+# Map the $, %, '.', and ',' characters to DIGIT
|
|
|
+# This might be useful for financial data.
|
|
|
+$ => DIGIT
|
|
|
+% => DIGIT
|
|
|
+. => DIGIT
|
|
|
+\\u002C => DIGIT
|
|
|
+
|
|
|
+# in some cases you might not want to split on ZWJ
|
|
|
+# this also tests the case where we need a bigger byte[]
|
|
|
+# see http://en.wikipedia.org/wiki/Zero-width_joiner
|
|
|
+\\u200D => ALPHANUM
|
|
|
+----
|
|
|
+
|
|
|
+Supported types include:
|
|
|
+
|
|
|
+* `ALPHA` (Alphabetical)
|
|
|
+* `ALPHANUM` (Alphanumeric)
|
|
|
+* `DIGIT` (Numeric)
|
|
|
+* `LOWER` (Lowercase alphabetical)
|
|
|
+* `SUBWORD_DELIM` (Non-alphanumeric delimiter)
|
|
|
+* `UPPER` (Uppercase alphabetical)
|
|
|
+
|
|
|
+This file path must be absolute or relative to the `config` location, and the
|
|
|
+file must be UTF-8 encoded. Each mapping in the file must be separated by a line
|
|
|
+break.
|
|
|
+--
|
|
|
+
|
|
|
+[[analysis-word-delimiter-tokenfilter-customize]]
|
|
|
+==== Customize
|
|
|
+
|
|
|
+To customize the `word_delimiter` filter, duplicate it to create the basis
|
|
|
+for a new custom token filter. You can modify the filter using its configurable
|
|
|
+parameters.
|
|
|
+
|
|
|
+For example, the following request creates a `word_delimiter`
|
|
|
+filter that uses the following rules:
|
|
|
+
|
|
|
+* Split tokens at non-alphanumeric characters, _except_ the hyphen (`-`)
|
|
|
+ character.
|
|
|
+* Remove leading or trailing delimiters from each token.
|
|
|
+* Do _not_ split tokens at letter case transitions.
|
|
|
+* Do _not_ split tokens at letter-number transitions.
|
|
|
+* Remove the English possessive (`'s`) from the end of each token.
|
|
|
+
|
|
|
+[source,console]
|
|
|
+----
|
|
|
+PUT /my_index
|
|
|
+{
|
|
|
+ "settings": {
|
|
|
+ "analysis": {
|
|
|
+ "analyzer": {
|
|
|
+ "my_analyzer": {
|
|
|
+ "tokenizer": "keyword",
|
|
|
+ "filter": [ "my_custom_word_delimiter_filter" ]
|
|
|
+ }
|
|
|
+ },
|
|
|
+ "filter": {
|
|
|
+ "my_custom_word_delimiter_filter": {
|
|
|
+ "type": "word_delimiter",
|
|
|
+ "type_table": [ "- => ALPHA" ],
|
|
|
+ "split_on_case_change": false,
|
|
|
+ "split_on_numerics": false,
|
|
|
+ "stem_english_possessive": true
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+----
|