|
@@ -78,6 +78,8 @@ Available evaluation types:
|
|
|
[[ml-evaluate-dfanalytics-example]]
|
|
|
==== {api-examples-title}
|
|
|
|
|
|
+
|
|
|
+[[ml-evaluate-binary-soft-class-example]]
|
|
|
===== Binary soft classification
|
|
|
|
|
|
[source,console]
|
|
@@ -139,6 +141,7 @@ The API returns the following results:
|
|
|
----
|
|
|
|
|
|
|
|
|
+[[ml-evaluate-regression-example]]
|
|
|
===== {regression-cap}
|
|
|
|
|
|
[source,console]
|
|
@@ -252,6 +255,7 @@ performance. This is required in order to evaluate results.
|
|
|
calculated by the {reganalysis}.
|
|
|
|
|
|
|
|
|
+[[ml-evaluate-classification-example]]
|
|
|
===== {classification-cap}
|
|
|
|
|
|
|
|
@@ -311,14 +315,14 @@ The API returns the following result:
|
|
|
"predicted_classes" : [
|
|
|
{
|
|
|
"predicted_class" : "dog",
|
|
|
- "count" : 11
|
|
|
+ "count" : 7
|
|
|
},
|
|
|
{
|
|
|
"predicted_class" : "cat",
|
|
|
"count" : 4
|
|
|
}
|
|
|
],
|
|
|
- "other_predicted_class_doc_count" : 4
|
|
|
+ "other_predicted_class_doc_count" : 0
|
|
|
}
|
|
|
],
|
|
|
"other_actual_class_count" : 0
|