[role="xpack"]
[[search-aggregations-metrics-boxplot-aggregation]]
=== Boxplot aggregation
++++
Boxplot
++++
A `boxplot` metrics aggregation that computes boxplot of numeric values extracted from the aggregated documents.
These values can be generated from specific numeric or <> in the documents.
The `boxplot` aggregation returns essential information for making a {wikipedia}/Box_plot[box plot]: minimum, maximum,
median, first quartile (25th percentile)  and third quartile (75th percentile) values.
==== Syntax
A `boxplot` aggregation looks like this in isolation:
[source,js]
--------------------------------------------------
{
  "boxplot": {
    "field": "load_time"
  }
}
--------------------------------------------------
// NOTCONSOLE
Let's look at a boxplot representing load time:
[source,console]
--------------------------------------------------
GET latency/_search
{
  "size": 0,
  "aggs": {
    "load_time_boxplot": {
      "boxplot": {
        "field": "load_time" <1>
      }
    }
  }
}
--------------------------------------------------
// TEST[setup:latency]
<1> The field `load_time` must be a numeric field
The response will look like this:
[source,console-result]
--------------------------------------------------
{
  ...
 "aggregations": {
    "load_time_boxplot": {
      "min": 0.0,
      "max": 990.0,
      "q1": 165.0,
      "q2": 445.0,
      "q3": 725.0,
      "lower": 0.0,
      "upper": 990.0
    }
  }
}
--------------------------------------------------
// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
In this case, the lower and upper whisker values are equal to the min and max. In general, these values are the 1.5 *
IQR range, which is to say the nearest values to `q1 - (1.5 * IQR)` and `q3 + (1.5 * IQR)`. Since this is an approximation, the given values
may not actually be observed values from the data, but should be within a reasonable error bound of them. While the Boxplot aggregation
doesn't directly return outlier points, you can check if `lower > min` or `upper < max` to see if outliers exist on either side, and then
query for them directly.
==== Script
If you need to create a boxplot for values that aren't indexed exactly you
should create a <> and get the boxplot of that. For
example, if your load times are in milliseconds but you want values calculated
in seconds, use a runtime field to convert them:
[source,console]
----
GET latency/_search
{
  "size": 0,
  "runtime_mappings": {
    "load_time.seconds": {
      "type": "long",
      "script": {
        "source": "emit(doc['load_time'].value / params.timeUnit)",
        "params": {
          "timeUnit": 1000
        }
      }
    }
  },
  "aggs": {
    "load_time_boxplot": {
      "boxplot": { "field": "load_time.seconds" }
    }
  }
}
----
// TEST[setup:latency]
// TEST[s/_search/_search?filter_path=aggregations/]
// TEST[s/"timeUnit": 1000/"timeUnit": 10/]
////
[source,console-result]
--------------------------------------------------
{
 "aggregations": {
    "load_time_boxplot": {
      "min": 0.0,
      "max": 99.0,
      "q1": 16.5,
      "q2": 44.5,
      "q3": 72.5,
      "lower": 0.0,
      "upper": 99.0
    }
  }
}
--------------------------------------------------
////
[[search-aggregations-metrics-boxplot-aggregation-approximation]]
==== Boxplot values are (usually) approximate
The algorithm used by the `boxplot` metric is called TDigest (introduced by
Ted Dunning in
https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf[Computing Accurate Quantiles using T-Digests]).
[WARNING]
====
Boxplot as other percentile aggregations are also
{wikipedia}/Nondeterministic_algorithm[non-deterministic].
This means you can get slightly different results using the same data.
====
[[search-aggregations-metrics-boxplot-aggregation-compression]]
==== Compression
Approximate algorithms must balance memory utilization with estimation accuracy.
This balance can be controlled using a `compression` parameter:
[source,console]
--------------------------------------------------
GET latency/_search
{
  "size": 0,
  "aggs": {
    "load_time_boxplot": {
      "boxplot": {
        "field": "load_time",
        "compression": 200    <1>
      }
    }
  }
}
--------------------------------------------------
// TEST[setup:latency]
<1> Compression controls memory usage and approximation error
include::percentile-aggregation.asciidoc[tags=t-digest]
==== Missing value
The `missing` parameter defines how documents that are missing a value should be treated.
By default they will be ignored but it is also possible to treat them as if they
had a value.
[source,console]
--------------------------------------------------
GET latency/_search
{
  "size": 0,
  "aggs": {
    "grade_boxplot": {
      "boxplot": {
        "field": "grade",
        "missing": 10     <1>
      }
    }
  }
}
--------------------------------------------------
// TEST[setup:latency]
<1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.