[role="xpack"]
[testenv="basic"]
[[get-inference-stats]]
=== Get {infer} trained model statistics API
[subs="attributes"]
++++
Get {infer} trained model stats
++++
Retrieves usage information for trained {infer} models.
experimental[]
[[ml-get-inference-stats-request]]
==== {api-request-title}
`GET _ml/inference/_stats` +
`GET _ml/inference/_all/_stats` +
`GET _ml/inference//_stats` +
`GET _ml/inference/,/_stats` +
`GET _ml/inference/,/_stats`
[[ml-get-inference-stats-prereq]]
==== {api-prereq-title}
Required privileges which should be added to a custom role:
* cluster: `monitor_ml`
  
For more information, see <> and <>.
[[ml-get-inference-stats-desc]]
==== {api-description-title}
You can get usage information for multiple trained models in a single API 
request by using a comma-separated list of model IDs or a wildcard expression.
[[ml-get-inference-stats-path-params]]
==== {api-path-parms-title}
``::
(Optional, string) 
include::{docdir}/ml/ml-shared.asciidoc[tag=model-id]
[[ml-get-inference-stats-query-params]]
==== {api-query-parms-title}
`allow_no_match`::
(Optional, boolean) 
include::{docdir}/ml/ml-shared.asciidoc[tag=allow-no-match]
`from`::
(Optional, integer) 
include::{docdir}/ml/ml-shared.asciidoc[tag=from]
`size`::
(Optional, integer) 
include::{docdir}/ml/ml-shared.asciidoc[tag=size]
[[ml-get-inference-stats-response-codes]]
==== {api-response-codes-title}
`404` (Missing resources)::
  If `allow_no_match` is `false`, this code indicates that there are no
  resources that match the request or only partial matches for the request.
  
[[ml-get-inference-stats-example]]
==== {api-examples-title}
The following example gets usage information for all the trained models:
[source,console]
--------------------------------------------------
GET _ml/inference/_stats
--------------------------------------------------
// TEST[skip:TBD]
The API returns the following results:
[source,console-result]
----
{
  "count": 2,
  "trained_model_stats": [
    {
      "model_id": "flight-delay-prediction-1574775339910",
      "pipeline_count": 0
    },
    {
      "model_id": "regression-job-one-1574775307356",
      "pipeline_count": 1,
      "ingest": {
        "total": {
          "count": 178,
          "time_in_millis": 8,
          "current": 0,
          "failed": 0
        },
        "pipelines": {
          "flight-delay": {
            "count": 178,
            "time_in_millis": 8,
            "current": 0,
            "failed": 0,
            "processors": [
              {
                "inference": {
                  "type": "inference",
                  "stats": {
                    "count": 178,
                    "time_in_millis": 7,
                    "current": 0,
                    "failed": 0
                  }
                }
              }
            ]
          }
        }
      }
    }
  ]
}
----
// NOTCONSOLE