| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 | [role="xpack"][testenv="platinum"][[ml-estimate-model-memory]]= Estimate {anomaly-jobs} model memory API++++<titleabbrev>Estimate model memory</titleabbrev>++++Makes an estimation of the memory usage for an {anomaly-job} model. It is based on analysis configuration details for the job and cardinality estimates for the fields it references.[[ml-estimate-model-memory-request]]== {api-request-title}`POST _ml/anomaly_detectors/_estimate_model_memory`[[ml-estimate-model-memory-prereqs]]== {api-prereq-title}Requires the `manage_ml` cluster privilege. This privilege is included in the `machine_learning_admin` built-in role.[[ml-estimate-model-memory-request-body]]== {api-request-body-title}`analysis_config`::(Required, object) For a list of the properties that you can specify in the `analysis_config` component of the body of this API, see <<put-analysisconfig,`analysis_config`>>.`max_bucket_cardinality`::(Required^\*^, object)Estimates of the highest cardinality in a single bucket that is observed for influencer fields over the time period that the job analyzes data. To produce a good answer, values must be provided for all influencer fields. Providing values for fields that are not listed as `influencers` has no effect on the estimation. +^*^It can be omitted from the request if there are no `influencers`.`overall_cardinality`::(Required^\*^, object) Estimates of the cardinality that is observed for fields over the whole time period that the job analyzes data. To produce a good answer, values must be provided for fields referenced in the `by_field_name`, `over_field_name` and `partition_field_name` of any detectors. Providing values for other fields has no effect on the estimation. +^*^It can be omitted from the request if no detectors have a `by_field_name`, `over_field_name` or `partition_field_name`.[[ml-estimate-model-memory-example]]== {api-examples-title}[source,console]--------------------------------------------------POST _ml/anomaly_detectors/_estimate_model_memory{  "analysis_config": {    "bucket_span": "5m",    "detectors": [      {        "function": "sum",        "field_name": "bytes",        "by_field_name": "status",        "partition_field_name": "app"      }    ],    "influencers": [ "source_ip", "dest_ip" ]  },  "overall_cardinality": {    "status": 10,    "app": 50  },  "max_bucket_cardinality": {    "source_ip": 300,    "dest_ip": 30  }}--------------------------------------------------// TEST[skip:needs-licence]The estimate returns the following result:[source,console-result]----{  "model_memory_estimate": "21mb"}----
 |