| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 | --:api: evaluate-data-frame:request: EvaluateDataFrameRequest:response: EvaluateDataFrameResponse--[role="xpack"][id="{upid}-{api}"]=== Evaluate {dfanalytics} APIEvaluates the {ml} algorithm that ran on a {dataframe}.The API accepts an +{request}+ object and returns an +{response}+.[id="{upid}-{api}-request"]==== Evaluate {dfanalytics} request["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-request]--------------------------------------------------<1> Constructing a new evaluation request<2> Reference to an existing index<3> The query with which to select data from indices<4> Kind of evaluation to perform<5> Name of the field in the index. Its value denotes the actual (i.e. ground truth) label for an example. Must be either true or false<6> Name of the field in the index. Its value denotes the probability (as per some ML algorithm) of the example being classified as positive<7> The remaining parameters are the metrics to be calculated based on the two fields described above.<8> https://en.wikipedia.org/wiki/Precision_and_recall[Precision] calculated at thresholds: 0.4, 0.5 and 0.6<9> https://en.wikipedia.org/wiki/Precision_and_recall[Recall] calculated at thresholds: 0.5 and 0.7<10> https://en.wikipedia.org/wiki/Confusion_matrix[Confusion matrix] calculated at threshold 0.5<11> https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve[AuC ROC] calculated and the curve points returnedinclude::../execution.asciidoc[][id="{upid}-{api}-response"]==== ResponseThe returned +{response}+ contains the requested evaluation metrics.["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-response]--------------------------------------------------<1> Fetching all the calculated metrics results<2> Fetching precision metric by name<3> Fetching precision at a given (0.4) threshold<4> Fetching confusion matrix metric by name<5> Fetching confusion matrix at a given (0.5) threshold
 |