123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- [[mapping-doc-count-field]]
- === `_doc_count` field
- Bucket aggregations always return a field named `doc_count` showing the number of documents that were aggregated and partitioned
- in each bucket. Computation of the value of `doc_count` is very simple. `doc_count` is incremented by 1 for every document collected
- in each bucket.
- While this simple approach is effective when computing aggregations over individual documents, it fails to accurately represent
- documents that store pre-aggregated data (such as `histogram` or `aggregate_metric_double` fields), because one summary field may
- represent multiple documents.
- To allow for correct computation of the number of documents when working with pre-aggregated data, we have introduced a
- metadata field type named `_doc_count`. `_doc_count` must always be a positive integer representing the number of documents
- aggregated in a single summary field.
- When field `_doc_count` is added to a document, all bucket aggregations will respect its value and increment the bucket `doc_count`
- by the value of the field. If a document does not contain any `_doc_count` field, `_doc_count = 1` is implied by default.
- [IMPORTANT]
- ========
- * A `_doc_count` field can only store a single positive integer per document. Nested arrays are not allowed.
- * If a document contains no `_doc_count` fields, aggregators will increment by 1, which is the default behavior.
- ========
- [[mapping-doc-count-field-example]]
- ==== Example
- The following <<indices-create-index, create index>> API request creates a new index with the following field mappings:
- * `my_histogram`, a `histogram` field used to store percentile data
- * `my_text`, a `keyword` field used to store a title for the histogram
- [source,console]
- --------------------------------------------------
- PUT my_index
- {
- "mappings" : {
- "properties" : {
- "my_histogram" : {
- "type" : "histogram"
- },
- "my_text" : {
- "type" : "keyword"
- }
- }
- }
- }
- --------------------------------------------------
- The following <<docs-index_,index>> API requests store pre-aggregated data for
- two histograms: `histogram_1` and `histogram_2`.
- [source,console]
- --------------------------------------------------
- PUT my_index/_doc/1
- {
- "my_text" : "histogram_1",
- "my_histogram" : {
- "values" : [0.1, 0.2, 0.3, 0.4, 0.5],
- "counts" : [3, 7, 23, 12, 6]
- },
- "_doc_count": 45 <1>
- }
- PUT my_index/_doc/2
- {
- "my_text" : "histogram_2",
- "my_histogram" : {
- "values" : [0.1, 0.25, 0.35, 0.4, 0.45, 0.5],
- "counts" : [8, 17, 8, 7, 6, 2]
- },
- "_doc_count": 62 <1>
- }
- --------------------------------------------------
- <1> Field `_doc_count` must be a positive integer storing the number of documents aggregated to produce each histogram.
- If we run the following <<search-aggregations-bucket-terms-aggregation, terms aggregation>> on `my_index`:
- [source,console]
- --------------------------------------------------
- GET /_search
- {
- "aggs" : {
- "histogram_titles" : {
- "terms" : { "field" : "my_text" }
- }
- }
- }
- --------------------------------------------------
- We will get the following response:
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations" : {
- "histogram_titles" : {
- "doc_count_error_upper_bound": 0,
- "sum_other_doc_count": 0,
- "buckets" : [
- {
- "key" : "histogram_2",
- "doc_count" : 62
- },
- {
- "key" : "histogram_1",
- "doc_count" : 45
- }
- ]
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[skip:test not setup]
|