123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647 |
- [role="xpack"]
- [[transform-painless-examples]]
- = Painless examples for {transforms}
- ++++
- <titleabbrev>Painless examples</titleabbrev>
- ++++
- These examples demonstrate how to use Painless in {transforms}. You can learn
- more about the Painless scripting language in the
- {painless}/painless-guide.html[Painless guide].
- * <<painless-top-hits>>
- * <<painless-time-features>>
- // * <<painless-group-by>>
- * <<painless-bucket-script>>
- * <<painless-count-http>>
- * <<painless-compare>>
- * <<painless-web-session>>
- [NOTE]
- --
- * While the context of the following examples is the {transform} use case,
- the Painless scripts in the snippets below can be used in other {es} search
- aggregations, too.
- * All the following examples use scripts, {transforms} cannot deduce mappings of
- output fields when the fields are created by a script. {transforms-cap} don't
- create any mappings in the destination index for these fields, which means they
- get dynamically mapped. Create the destination index prior to starting the
- {transform} in case you want explicit mappings.
- --
- [[painless-top-hits]]
- == Getting top hits by using scripted metric aggregation
- This snippet shows how to find the latest document, in other words the document
- with the latest timestamp. From a technical perspective, it helps to achieve
- the function of a <<search-aggregations-metrics-top-hits-aggregation>> by using
- scripted metric aggregation in a {transform}, which provides a metric output.
- [source,js]
- --------------------------------------------------
- "aggregations": {
- "latest_doc": {
- "scripted_metric": {
- "init_script": "state.timestamp_latest = 0L; state.last_doc = ''", <1>
- "map_script": """ <2>
- def current_date = doc['@timestamp'].getValue().toInstant().toEpochMilli();
- if (current_date > state.timestamp_latest)
- {state.timestamp_latest = current_date;
- state.last_doc = new HashMap(params['_source']);}
- """,
- "combine_script": "return state", <3>
- "reduce_script": """ <4>
- def last_doc = '';
- def timestamp_latest = 0L;
- for (s in states) {if (s.timestamp_latest > (timestamp_latest))
- {timestamp_latest = s.timestamp_latest; last_doc = s.last_doc;}}
- return last_doc
- """
- }
- }
- }
- --------------------------------------------------
- // NOTCONSOLE
- <1> The `init_script` creates a long type `timestamp_latest` and a string type
- `last_doc` in the `state` object.
- <2> The `map_script` defines `current_date` based on the timestamp of the
- document, then compares `current_date` with `state.timestamp_latest`, finally
- returns `state.last_doc` from the shard. By using `new HashMap(...)` you copy
- the source document, this is important whenever you want to pass the full source
- object from one phase to the next.
- <3> The `combine_script` returns `state` from each shard.
- <4> The `reduce_script` iterates through the value of `s.timestamp_latest`
- returned by each shard and returns the document with the latest timestamp
- (`last_doc`). In the response, the top hit (in other words, the `latest_doc`) is
- nested below the `latest_doc` field.
- Check the <<scripted-metric-aggregation-scope,scope of scripts>> for detailed
- explanation on the respective scripts.
- You can retrieve the last value in a similar way:
- [source,js]
- --------------------------------------------------
- "aggregations": {
- "latest_value": {
- "scripted_metric": {
- "init_script": "state.timestamp_latest = 0L; state.last_value = ''",
- "map_script": """
- def current_date = doc['@timestamp'].getValue().toInstant().toEpochMilli();
- if (current_date > state.timestamp_latest)
- {state.timestamp_latest = current_date;
- state.last_value = params['_source']['value'];}
- """,
- "combine_script": "return state",
- "reduce_script": """
- def last_value = '';
- def timestamp_latest = 0L;
- for (s in states) {if (s.timestamp_latest > (timestamp_latest))
- {timestamp_latest = s.timestamp_latest; last_value = s.last_value;}}
- return last_value
- """
- }
- }
- }
- --------------------------------------------------
- // NOTCONSOLE
- [[painless-time-features]]
- == Getting time features by using aggregations
- This snippet shows how to extract time based features by using Painless in a
- {transform}. The snippet uses an index where `@timestamp` is defined as a `date`
- type field.
- [source,js]
- --------------------------------------------------
- "aggregations": {
- "avg_hour_of_day": { <1>
- "avg":{
- "script": { <2>
- "source": """
- ZonedDateTime date = doc['@timestamp'].value; <3>
- return date.getHour(); <4>
- """
- }
- }
- },
- "avg_month_of_year": { <5>
- "avg":{
- "script": { <6>
- "source": """
- ZonedDateTime date = doc['@timestamp'].value; <7>
- return date.getMonthValue(); <8>
- """
- }
- }
- },
- ...
- }
- --------------------------------------------------
- // NOTCONSOLE
- <1> Name of the aggregation.
- <2> Contains the Painless script that returns the hour of the day.
- <3> Sets `date` based on the timestamp of the document.
- <4> Returns the hour value from `date`.
- <5> Name of the aggregation.
- <6> Contains the Painless script that returns the month of the year.
- <7> Sets `date` based on the timestamp of the document.
- <8> Returns the month value from `date`.
- ////
- [[painless-group-by]]
- == Using Painless in `group_by`
- It is possible to base the `group_by` property of a {transform} on the output of
- a script. The following example uses the {kib} sample web logs dataset. The goal
- here is to make the {transform} output easier to understand through normalizing
- the value of the fields that the data is grouped by.
- [source,console]
- --------------------------------------------------
- POST _transform/_preview
- {
- "source": {
- "index": [ <1>
- "kibana_sample_data_logs"
- ]
- },
- "pivot": {
- "group_by": {
- "agent": {
- "terms": {
- "script": { <2>
- "source": """String agent = doc['agent.keyword'].value;
- if (agent.contains("MSIE")) {
- return "internet explorer";
- } else if (agent.contains("AppleWebKit")) {
- return "safari";
- } else if (agent.contains('Firefox')) {
- return "firefox";
- } else { return agent }""",
- "lang": "painless"
- }
- }
- }
- },
- "aggregations": { <3>
- "200": {
- "filter": {
- "term": {
- "response": "200"
- }
- }
- },
- "404": {
- "filter": {
- "term": {
- "response": "404"
- }
- }
- },
- "503": {
- "filter": {
- "term": {
- "response": "503"
- }
- }
- }
- }
- },
- "dest": { <4>
- "index": "pivot_logs"
- }
- }
- --------------------------------------------------
- // TEST[skip:setup kibana sample data]
- <1> Specifies the source index or indices.
- <2> The script defines an `agent` string based on the `agent` field of the
- documents, then iterates through the values. If an `agent` field contains
- "MSIE", than the script returns "Internet Explorer". If it contains
- `AppleWebKit`, it returns "safari". It returns "firefox" if the field value
- contains "Firefox". Finally, in every other case, the value of the field is
- returned.
- <3> The aggregations object contains filters that narrow down the results to
- documents that contains `200`, `404`, or `503` values in the `response` field.
- <4> Specifies the destination index of the {transform}.
- The API returns the following result:
- [source,js]
- --------------------------------------------------
- {
- "preview" : [
- {
- "agent" : "firefox",
- "200" : 4931,
- "404" : 259,
- "503" : 172
- },
- {
- "agent" : "internet explorer",
- "200" : 3674,
- "404" : 210,
- "503" : 126
- },
- {
- "agent" : "safari",
- "200" : 4227,
- "404" : 332,
- "503" : 143
- }
- ],
- "mappings" : {
- "properties" : {
- "200" : {
- "type" : "long"
- },
- "agent" : {
- "type" : "keyword"
- },
- "404" : {
- "type" : "long"
- },
- "503" : {
- "type" : "long"
- }
- }
- }
- }
- --------------------------------------------------
- // NOTCONSOLE
- You can see that the `agent` values are simplified so it is easier to interpret
- them. The table below shows how normalization modifies the output of the
- {transform} in our example compared to the non-normalized values.
- [width="50%"]
- |===
- | Non-normalized `agent` value | Normalized `agent` value
- | "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)" | "internet explorer"
- | "Mozilla/5.0 (X11; Linux i686) AppleWebKit/534.24 (KHTML, like Gecko) Chrome/11.0.696.50 Safari/534.24" | "safari"
- | "Mozilla/5.0 (X11; Linux x86_64; rv:6.0a1) Gecko/20110421 Firefox/6.0a1" | "firefox"
- |===
- ////
- [[painless-bucket-script]]
- == Getting duration by using bucket script
- This example shows you how to get the duration of a session by client IP from a
- data log by using
- <<search-aggregations-pipeline-bucket-script-aggregation,bucket script>>.
- The example uses the {kib} sample web logs dataset.
- [source,console]
- --------------------------------------------------
- PUT _transform/data_log
- {
- "source": {
- "index": "kibana_sample_data_logs"
- },
- "dest": {
- "index": "data-logs-by-client"
- },
- "pivot": {
- "group_by": {
- "machine.os": {"terms": {"field": "machine.os.keyword"}},
- "machine.ip": {"terms": {"field": "clientip"}}
- },
- "aggregations": {
- "time_frame.lte": {
- "max": {
- "field": "timestamp"
- }
- },
- "time_frame.gte": {
- "min": {
- "field": "timestamp"
- }
- },
- "time_length": { <1>
- "bucket_script": {
- "buckets_path": { <2>
- "min": "time_frame.gte.value",
- "max": "time_frame.lte.value"
- },
- "script": "params.max - params.min" <3>
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[skip:setup kibana sample data]
- <1> To define the length of the sessions, we use a bucket script.
- <2> The bucket path is a map of script variables and their associated path to
- the buckets you want to use for the variable. In this particular case, `min` and
- `max` are variables mapped to `time_frame.gte.value` and `time_frame.lte.value`.
- <3> Finally, the script substracts the start date of the session from the end
- date which results in the duration of the session.
- [[painless-count-http]]
- == Counting HTTP responses by using scripted metric aggregation
- You can count the different HTTP response types in a web log data set by using
- scripted metric aggregation as part of the {transform}. You can achieve a
- similar function with filter aggregations, check the
- {ref}/transform-examples.html#example-clientips[Finding suspicious client IPs]
- example for details.
- The example below assumes that the HTTP response codes are stored as keywords in
- the `response` field of the documents.
- [source,js]
- --------------------------------------------------
- "aggregations": { <1>
- "responses.counts": { <2>
- "scripted_metric": { <3>
- "init_script": "state.responses = ['error':0L,'success':0L,'other':0L]", <4>
- "map_script": """ <5>
- def code = doc['response.keyword'].value;
- if (code.startsWith('5') || code.startsWith('4')) {
- state.responses.error += 1 ;
- } else if(code.startsWith('2')) {
- state.responses.success += 1;
- } else {
- state.responses.other += 1;
- }
- """,
- "combine_script": "state.responses", <6>
- "reduce_script": """ <7>
- def counts = ['error': 0L, 'success': 0L, 'other': 0L];
- for (responses in states) {
- counts.error += responses['error'];
- counts.success += responses['success'];
- counts.other += responses['other'];
- }
- return counts;
- """
- }
- },
- ...
- }
- --------------------------------------------------
- // NOTCONSOLE
- <1> The `aggregations` object of the {transform} that contains all aggregations.
- <2> Object of the `scripted_metric` aggregation.
- <3> This `scripted_metric` performs a distributed operation on the web log data
- to count specific types of HTTP responses (error, success, and other).
- <4> The `init_script` creates a `responses` array in the `state` object with
- three properties (`error`, `success`, `other`) with long data type.
- <5> The `map_script` defines `code` based on the `response.keyword` value of the
- document, then it counts the errors, successes, and other responses based on the
- first digit of the responses.
- <6> The `combine_script` returns `state.responses` from each shard.
- <7> The `reduce_script` creates a `counts` array with the `error`, `success`,
- and `other` properties, then iterates through the value of `responses` returned
- by each shard and assigns the different response types to the appropriate
- properties of the `counts` object; error responses to the error counts, success
- responses to the success counts, and other responses to the other counts.
- Finally, returns the `counts` array with the response counts.
- [[painless-compare]]
- == Comparing indices by using scripted metric aggregations
- This example shows how to compare the content of two indices by a {transform}
- that uses a scripted metric aggregation.
- [source,console]
- --------------------------------------------------
- POST _transform/_preview
- {
- "id" : "index_compare",
- "source" : { <1>
- "index" : [
- "index1",
- "index2"
- ],
- "query" : {
- "match_all" : { }
- }
- },
- "dest" : { <2>
- "index" : "compare"
- },
- "pivot" : {
- "group_by" : {
- "unique-id" : {
- "terms" : {
- "field" : "<unique-id-field>" <3>
- }
- }
- },
- "aggregations" : {
- "compare" : { <4>
- "scripted_metric" : {
- "map_script" : "state.doc = new HashMap(params['_source'])", <5>
- "combine_script" : "return state", <6>
- "reduce_script" : """ <7>
- if (states.size() != 2) {
- return "count_mismatch"
- }
- if (states.get(0).equals(states.get(1))) {
- return "match"
- } else {
- return "mismatch"
- }
- """
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[skip:setup kibana sample data]
- <1> The indices referenced in the `source` object are compared to each other.
- <2> The `dest` index contains the results of the comparison.
- <3> The `group_by` field needs to be a unique identifier for each document.
- <4> Object of the `scripted_metric` aggregation.
- <5> The `map_script` defines `doc` in the state object. By using
- `new HashMap(...)` you copy the source document, this is important whenever you
- want to pass the full source object from one phase to the next.
- <6> The `combine_script` returns `state` from each shard.
- <7> The `reduce_script` checks if the size of the indices are equal. If they are
- not equal, than it reports back a `count_mismatch`. Then it iterates through all
- the values of the two indices and compare them. If the values are equal, then it
- returns a `match`, otherwise returns a `mismatch`.
- [[painless-web-session]]
- == Getting web session details by using scripted metric aggregation
- This example shows how to derive multiple features from a single transaction.
- Let's take a look on the example source document from the data:
- .Source document
- [%collapsible%open]
- =====
- [source,js]
- --------------------------------------------------
- {
- "_index":"apache-sessions",
- "_type":"_doc",
- "_id":"KvzSeGoB4bgw0KGbE3wP",
- "_score":1.0,
- "_source":{
- "@timestamp":1484053499256,
- "apache":{
- "access":{
- "sessionid":"571604f2b2b0c7b346dc685eeb0e2306774a63c2",
- "url":"http://www.leroymerlin.fr/v3/search/search.do?keyword=Carrelage%20salle%20de%20bain",
- "path":"/v3/search/search.do",
- "query":"keyword=Carrelage%20salle%20de%20bain",
- "referrer":"http://www.leroymerlin.fr/v3/p/produits/carrelage-parquet-sol-souple/carrelage-sol-et-mur/decor-listel-et-accessoires-carrelage-mural-l1308217717?resultOffset=0&resultLimit=51&resultListShape=MOSAIC&priceStyle=SALEUNIT_PRICE",
- "user_agent":{
- "original":"Mobile Safari 10.0 Mac OS X (iPad) Apple Inc.",
- "os_name":"Mac OS X (iPad)"
- },
- "remote_ip":"0337b1fa-5ed4-af81-9ef4-0ec53be0f45d",
- "geoip":{
- "country_iso_code":"FR",
- "location":{
- "lat":48.86,
- "lon":2.35
- }
- },
- "response_code":200,
- "method":"GET"
- }
- }
- }
- }
- ...
- --------------------------------------------------
- // NOTCONSOLE
- =====
- By using the `sessionid` as a group-by field, you are able to enumerate events
- through the session and get more details of the session by using scripted metric
- aggregation.
- [source,js]
- --------------------------------------------------
- POST _transform/_preview
- {
- "source": {
- "index": "apache-sessions"
- },
- "pivot": {
- "group_by": {
- "sessionid": { <1>
- "terms": {
- "field": "apache.access.sessionid"
- }
- }
- },
- "aggregations": { <2>
- "distinct_paths": {
- "cardinality": {
- "field": "apache.access.path"
- }
- },
- "num_pages_viewed": {
- "value_count": {
- "field": "apache.access.url"
- }
- },
- "session_details": {
- "scripted_metric": {
- "init_script": "state.docs = []", <3>
- "map_script": """ <4>
- Map span = [
- '@timestamp':doc['@timestamp'].value,
- 'url':doc['apache.access.url'].value,
- 'referrer':doc['apache.access.referrer'].value
- ];
- state.docs.add(span)
- """,
- "combine_script": "return state.docs;", <5>
- "reduce_script": """ <6>
- def all_docs = [];
- for (s in states) {
- for (span in s) {
- all_docs.add(span);
- }
- }
- all_docs.sort((HashMap o1, HashMap o2)->o1['@timestamp'].toEpochMilli().compareTo(o2['@timestamp'].toEpochMilli()));
- def size = all_docs.size();
- def min_time = all_docs[0]['@timestamp'];
- def max_time = all_docs[size-1]['@timestamp'];
- def duration = max_time.toEpochMilli() - min_time.toEpochMilli();
- def entry_page = all_docs[0]['url'];
- def exit_path = all_docs[size-1]['url'];
- def first_referrer = all_docs[0]['referrer'];
- def ret = new HashMap();
- ret['first_time'] = min_time;
- ret['last_time'] = max_time;
- ret['duration'] = duration;
- ret['entry_page'] = entry_page;
- ret['exit_path'] = exit_path;
- ret['first_referrer'] = first_referrer;
- return ret;
- """
- }
- }
- }
- }
- }
- --------------------------------------------------
- // NOTCONSOLE
- <1> The data is grouped by `sessionid`.
- <2> The aggregations counts the number of paths and enumerate the viewed pages
- during the session.
- <3> The `init_script` creates an array type `doc` in the `state` object.
- <4> The `map_script` defines a `span` array with a timestamp, a URL, and a
- referrer value which are based on the corresponding values of the document, then
- adds the value of the `span` array to the `doc` object.
- <5> The `combine_script` returns `state.docs` from each shard.
- <6> The `reduce_script` defines various objects like `min_time`, `max_time`, and
- `duration` based on the document fields, then declares a `ret` object, and
- copies the source document by using `new HashMap ()`. Next, the script defines
- `first_time`, `last_time`, `duration` and other fields inside the `ret` object
- based on the corresponding object defined earlier, finally returns `ret`.
- The API call results in a similar response:
- [source,js]
- --------------------------------------------------
- {
- "num_pages_viewed" : 2.0,
- "session_details" : {
- "duration" : 100300001,
- "first_referrer" : "https://www.bing.com/",
- "entry_page" : "http://www.leroymerlin.fr/v3/p/produits/materiaux-menuiserie/porte-coulissante-porte-interieure-escalier-et-rambarde/barriere-de-securite-l1308218463",
- "first_time" : "2017-01-10T21:22:52.982Z",
- "last_time" : "2017-01-10T21:25:04.356Z",
- "exit_path" : "http://www.leroymerlin.fr/v3/p/produits/materiaux-menuiserie/porte-coulissante-porte-interieure-escalier-et-rambarde/barriere-de-securite-l1308218463?__result-wrapper?pageTemplate=Famille%2FMat%C3%A9riaux+et+menuiserie&resultOffset=0&resultLimit=50&resultListShape=PLAIN&nomenclatureId=17942&priceStyle=SALEUNIT_PRICE&fcr=1&*4294718806=4294718806&*14072=14072&*4294718593=4294718593&*17942=17942"
- },
- "distinct_paths" : 1.0,
- "sessionid" : "000046f8154a80fd89849369c984b8cc9d795814"
- },
- {
- "num_pages_viewed" : 10.0,
- "session_details" : {
- "duration" : 343100405,
- "first_referrer" : "https://www.google.fr/",
- "entry_page" : "http://www.leroymerlin.fr/",
- "first_time" : "2017-01-10T16:57:39.937Z",
- "last_time" : "2017-01-10T17:03:23.049Z",
- "exit_path" : "http://www.leroymerlin.fr/v3/p/produits/porte-de-douche-coulissante-adena-e168578"
- },
- "distinct_paths" : 8.0,
- "sessionid" : "000087e825da1d87a332b8f15fa76116c7467da6"
- }
- ...
- --------------------------------------------------
- // NOTCONSOLE
|