123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- [role="xpack"]
- [testenv="platinum"]
- [[evaluate-dfanalytics]]
- === Evaluate {dfanalytics} API
- [subs="attributes"]
- ++++
- <titleabbrev>Evaluate {dfanalytics}</titleabbrev>
- ++++
- Evaluates the {dfanalytics} for an annotated index.
- experimental[]
- [[ml-evaluate-dfanalytics-request]]
- ==== {api-request-title}
- `POST _ml/data_frame/_evaluate`
- [[ml-evaluate-dfanalytics-prereq]]
- ==== {api-prereq-title}
- * You must have `monitor_ml` privilege to use this API. For more
- information, see {stack-ov}/security-privileges.html[Security privileges] and
- {stack-ov}/built-in-roles.html[Built-in roles].
- [[ml-evaluate-dfanalytics-desc]]
- ==== {api-description-title}
- This API evaluates the executed analysis on an index that is already annotated
- with a field that contains the results of the analytics (the `ground truth`)
- for each {dataframe} row.
- Evaluation is typically done by calculating a set of metrics that capture various aspects of the quality of the results over the data for which you have the
- `ground truth`.
- For different types of analyses different metrics are suitable. This API
- packages together commonly used metrics for various analyses.
- [[ml-evaluate-dfanalytics-request-body]]
- ==== {api-request-body-title}
- `index`::
- (Required, object) Defines the `index` in which the evaluation will be
- performed.
-
- `evaluation`::
- (Required, object) Defines the type of evaluation you want to perform. For example:
- `binary_soft_classification`. See <<ml-evaluate-dfanalytics-resources>>.
-
- ////
- [[ml-evaluate-dfanalytics-results]]
- ==== {api-response-body-title}
- `binary_soft_classification`::
- (object) If you chose to do binary soft classification, the API returns the
- following evaluation metrics:
-
- `auc_roc`::: TBD
- `confusion_matrix`::: TBD
-
- `precision`::: TBD
- `recall`::: TBD
- ////
- [[ml-evaluate-dfanalytics-example]]
- ==== {api-examples-title}
- [source,js]
- --------------------------------------------------
- POST _ml/data_frame/_evaluate
- {
- "index": "my_analytics_dest_index",
- "evaluation": {
- "binary_soft_classification": {
- "actual_field": "is_outlier",
- "predicted_probability_field": "ml.outlier_score"
- }
- }
- }
- --------------------------------------------------
- // CONSOLE
- // TEST[skip:TBD]
- The API returns the following results:
- [source,js]
- ----
- {
- "binary_soft_classification": {
- "auc_roc": {
- "score": 0.92584757746414444
- },
- "confusion_matrix": {
- "0.25": {
- "tp": 5,
- "fp": 9,
- "tn": 204,
- "fn": 5
- },
- "0.5": {
- "tp": 1,
- "fp": 5,
- "tn": 208,
- "fn": 9
- },
- "0.75": {
- "tp": 0,
- "fp": 4,
- "tn": 209,
- "fn": 10
- }
- },
- "precision": {
- "0.25": 0.35714285714285715,
- "0.5": 0.16666666666666666,
- "0.75": 0
- },
- "recall": {
- "0.25": 0.5,
- "0.5": 0.1,
- "0.75": 0
- }
- }
- }
- ----
- // TESTRESPONSE
|