1
0

multi-match-query.asciidoc 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. [[query-dsl-multi-match-query]]
  2. === Multi Match Query
  3. The `multi_match` query builds on the <<query-dsl-match-query,`match` query>>
  4. to allow multi-field queries:
  5. [source,js]
  6. --------------------------------------------------
  7. {
  8. "multi_match" : {
  9. "query": "this is a test", <1>
  10. "fields": [ "subject", "message" ] <2>
  11. }
  12. }
  13. --------------------------------------------------
  14. <1> The query string.
  15. <2> The fields to be queried.
  16. [float]
  17. ==== `fields` and per-field boosting
  18. Fields can be specified with wildcards, eg:
  19. [source,js]
  20. --------------------------------------------------
  21. {
  22. "multi_match" : {
  23. "query": "Will Smith",
  24. "fields": [ "title", "*_name" ] <1>
  25. }
  26. }
  27. --------------------------------------------------
  28. <1> Query the `title`, `first_name` and `last_name` fields.
  29. Individual fields can be boosted with the caret (`^`) notation:
  30. [source,js]
  31. --------------------------------------------------
  32. {
  33. "multi_match" : {
  34. "query" : "this is a test",
  35. "fields" : [ "subject^3", "message" ] <1>
  36. }
  37. }
  38. --------------------------------------------------
  39. <1> The `subject` field is three times as important as the `message` field.
  40. [[multi-match-types]]
  41. [float]
  42. ==== Types of `multi_match` query:
  43. The way the `multi_match` query is executed internally depends on the `type`
  44. parameter, which can be set to:
  45. [horizontal]
  46. `best_fields`:: (*default*) Finds documents which match any field, but
  47. uses the `_score` from the best field. See <<type-best-fields>>.
  48. `most_fields`:: Finds documents which match any field and combines
  49. the `_score` from each field. See <<type-most-fields>>.
  50. `cross_fields`:: Treats fields with the same `analyzer` as though they
  51. were one big field. Looks for each word in *any*
  52. field. See <<type-cross-fields>>.
  53. `phrase`:: Runs a `match_phrase` query on each field and combines
  54. the `_score` from each field. See <<type-phrase>>.
  55. `phrase_prefix`:: Runs a `match_phrase_prefix` query on each field and
  56. combines the `_score` from each field. See <<type-phrase>>.
  57. [[type-best-fields]]
  58. ==== `best_fields`
  59. The `best_fields` type is most useful when you are searching for multiple
  60. words best found in the same field. For instance ``brown fox'' in a single
  61. field is more meaningful than ``brown'' in one field and ``fox'' in the other.
  62. The `best_fields` type generates a <<query-dsl-match-query,`match` query>> for
  63. each field and wraps them in a <<query-dsl-dis-max-query,`dis_max`>> query, to
  64. find the single best matching field. For instance, this query:
  65. [source,js]
  66. --------------------------------------------------
  67. {
  68. "multi_match" : {
  69. "query": "brown fox",
  70. "type": "best_fields",
  71. "fields": [ "subject", "message" ],
  72. "tie_breaker": 0.3
  73. }
  74. }
  75. --------------------------------------------------
  76. would be executed as:
  77. [source,js]
  78. --------------------------------------------------
  79. {
  80. "dis_max": {
  81. "queries": [
  82. { "match": { "subject": "brown fox" }},
  83. { "match": { "message": "brown fox" }}
  84. ],
  85. "tie_breaker": 0.3
  86. }
  87. }
  88. --------------------------------------------------
  89. Normally the `best_fields` type uses the score of the *single* best matching
  90. field, but if `tie_breaker` is specified, then it calculates the score as
  91. follows:
  92. * the score from the best matching field
  93. * plus `tie_breaker * _score` for all other matching fields
  94. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  95. `fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`
  96. and `cutoff_frequency`, as explained in <<query-dsl-match-query, match query>>.
  97. [IMPORTANT]
  98. [[operator-min]]
  99. .`operator` and `minimum_should_match`
  100. ===================================================
  101. The `best_fields` and `most_fields` types are _field-centric_ -- they generate
  102. a `match` query *per field*. This means that the `operator` and
  103. `minimum_should_match` parameters are applied to each field individually,
  104. which is probably not what you want.
  105. Take this query for example:
  106. [source,js]
  107. --------------------------------------------------
  108. {
  109. "multi_match" : {
  110. "query": "Will Smith",
  111. "type": "best_fields",
  112. "fields": [ "first_name", "last_name" ],
  113. "operator": "and" <1>
  114. }
  115. }
  116. --------------------------------------------------
  117. <1> All terms must be present.
  118. This query is executed as:
  119. (+first_name:will +first_name:smith)
  120. | (+last_name:will +last_name:smith)
  121. In other words, *all terms* must be present *in a single field* for a document
  122. to match.
  123. See <<type-cross-fields>> for a better solution.
  124. ===================================================
  125. [[type-most-fields]]
  126. ==== `most_fields`
  127. The `most_fields` type is most useful when querying multiple fields that
  128. contain the same text analyzed in different ways. For instance, the main
  129. field may contain synonyms, stemming and terms without diacritics. A second
  130. field may contain the original terms, and a third field might contain
  131. shingles. By combining scores from all three fields we can match as many
  132. documents as possible with the main field, but use the second and third fields
  133. to push the most similar results to the top of the list.
  134. This query:
  135. [source,js]
  136. --------------------------------------------------
  137. {
  138. "multi_match" : {
  139. "query": "quick brown fox",
  140. "type": "most_fields",
  141. "fields": [ "title", "title.original", "title.shingles" ]
  142. }
  143. }
  144. --------------------------------------------------
  145. would be executed as:
  146. [source,js]
  147. --------------------------------------------------
  148. {
  149. "bool": {
  150. "should": [
  151. { "match": { "title": "quick brown fox" }},
  152. { "match": { "title.original": "quick brown fox" }},
  153. { "match": { "title.shingles": "quick brown fox" }}
  154. ]
  155. }
  156. }
  157. --------------------------------------------------
  158. The score from each `match` clause is added together, then divided by the
  159. number of `match` clauses.
  160. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  161. `fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`
  162. and `cutoff_frequency`, as explained in <<query-dsl-match-query,match query>>, but
  163. *see <<operator-min>>*.
  164. [[type-phrase]]
  165. ==== `phrase` and `phrase_prefix`
  166. The `phrase` and `phrase_prefix` types behave just like <<type-best-fields>>,
  167. but they use a `match_phrase` or `match_phrase_prefix` query instead of a
  168. `match` query.
  169. This query:
  170. [source,js]
  171. --------------------------------------------------
  172. {
  173. "multi_match" : {
  174. "query": "quick brown f",
  175. "type": "phrase_prefix",
  176. "fields": [ "subject", "message" ]
  177. }
  178. }
  179. --------------------------------------------------
  180. would be executed as:
  181. [source,js]
  182. --------------------------------------------------
  183. {
  184. "dis_max": {
  185. "queries": [
  186. { "match_phrase_prefix": { "subject": "quick brown f" }},
  187. { "match_phrase_prefix": { "message": "quick brown f" }}
  188. ]
  189. }
  190. }
  191. --------------------------------------------------
  192. Also, accepts `analyzer`, `boost`, `slop` and `zero_terms_query` as explained
  193. in <<query-dsl-match-query>>. Type `phrase_prefix` additionally accepts
  194. `max_expansions`.
  195. [[type-cross-fields]]
  196. ==== `cross_fields`
  197. The `cross_fields` type is particularly useful with structured documents where
  198. multiple fields *should* match. For instance, when querying the `first_name`
  199. and `last_name` fields for ``Will Smith'', the best match is likely to have
  200. ``Will'' in one field and ``Smith'' in the other.
  201. ****
  202. This sounds like a job for <<type-most-fields>> but there are two problems
  203. with that approach. The first problem is that `operator` and
  204. `minimum_should_match` are applied per-field, instead of per-term (see
  205. <<operator-min,explanation above>>).
  206. The second problem is to do with relevance: the different term frequencies in
  207. the `first_name` and `last_name` fields can produce unexpected results.
  208. For instance, imagine we have two people: ``Will Smith'' and ``Smith Jones''.
  209. ``Smith'' as a last name is very common (and so is of low importance) but
  210. ``Smith'' as a first name is very uncommon (and so is of great importance).
  211. If we do a search for ``Will Smith'', the ``Smith Jones'' document will
  212. probably appear above the better matching ``Will Smith'' because the score of
  213. `first_name:smith` has trumped the combined scores of `first_name:will` plus
  214. `last_name:smith`.
  215. ****
  216. One way of dealing with these types of queries is simply to index the
  217. `first_name` and `last_name` fields into a single `full_name` field. Of
  218. course, this can only be done at index time.
  219. The `cross_field` type tries to solve these problems at query time by taking a
  220. _term-centric_ approach. It first analyzes the query string into individual
  221. terms, then looks for each term in any of the fields, as though they were one
  222. big field.
  223. A query like:
  224. [source,js]
  225. --------------------------------------------------
  226. {
  227. "multi_match" : {
  228. "query": "Will Smith",
  229. "type": "cross_fields",
  230. "fields": [ "first_name", "last_name" ],
  231. "operator": "and"
  232. }
  233. }
  234. --------------------------------------------------
  235. is executed as:
  236. +(first_name:will last_name:will)
  237. +(first_name:smith last_name:smith)
  238. In other words, *all terms* must be present *in at least one field* for a
  239. document to match. (Compare this to
  240. <<operator-min,the logic used for `best_fields` and `most_fields`>>.)
  241. That solves one of the two problems. The problem of differing term frequencies
  242. is solved by _blending_ the term frequencies for all fields in order to even
  243. out the differences. In other words, `first_name:smith` will be treated as
  244. though it has the same weight as `last_name:smith`. (Actually,
  245. `first_name:smith` is given a tiny advantage over `last_name:smith`, just to
  246. make the order of results more stable.)
  247. If you run the above query through the <<search-validate>>, it returns this
  248. explanation:
  249. +blended("will", fields: [first_name, last_name])
  250. +blended("smith", fields: [first_name, last_name])
  251. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  252. `zero_terms_query` and `cutoff_frequency`, as explained in
  253. <<query-dsl-match-query, match query>>.
  254. ===== `cross_field` and analysis
  255. The `cross_field` type can only work in term-centric mode on fields that have
  256. the same analyzer. Fields with the same analyzer are grouped together as in
  257. the example above. If there are multiple groups, they are combined with a
  258. `bool` query.
  259. For instance, if we have a `first` and `last` field which have
  260. the same analyzer, plus a `first.edge` and `last.edge` which
  261. both use an `edge_ngram` analyzer, this query:
  262. [source,js]
  263. --------------------------------------------------
  264. {
  265. "multi_match" : {
  266. "query": "Jon",
  267. "type": "cross_fields",
  268. "fields": [
  269. "first", "first.edge",
  270. "last", "last.edge"
  271. ]
  272. }
  273. }
  274. --------------------------------------------------
  275. would be executed as:
  276. blended("jon", fields: [first, last])
  277. | (
  278. blended("j", fields: [first.edge, last.edge])
  279. blended("jo", fields: [first.edge, last.edge])
  280. blended("jon", fields: [first.edge, last.edge])
  281. )
  282. In other words, `first` and `last` would be grouped together and
  283. treated as a single field, and `first.edge` and `last.edge` would be
  284. grouped together and treated as a single field.
  285. Having multiple groups is fine, but when combined with `operator` or
  286. `minimum_should_match`, it can suffer from the <<operator-min,same problem>>
  287. as `most_fields` or `best_fields`.
  288. You can easily rewrite this query yourself as two separate `cross_fields`
  289. queries combined with a `bool` query, and apply the `minimum_should_match`
  290. parameter to just one of them:
  291. [source,js]
  292. --------------------------------------------------
  293. {
  294. "bool": {
  295. "should": [
  296. {
  297. "multi_match" : {
  298. "query": "Will Smith",
  299. "type": "cross_fields",
  300. "fields": [ "first", "last" ],
  301. "minimum_should_match": "50%" <1>
  302. }
  303. },
  304. {
  305. "multi_match" : {
  306. "query": "Will Smith",
  307. "type": "cross_fields",
  308. "fields": [ "*.edge" ]
  309. }
  310. }
  311. ]
  312. }
  313. }
  314. --------------------------------------------------
  315. <1> Either `will` or `smith` must be present in either of the `first`
  316. or `last` fields
  317. You can force all fields into the same group by specifying the `analyzer`
  318. parameter in the query.
  319. [source,js]
  320. --------------------------------------------------
  321. {
  322. "multi_match" : {
  323. "query": "Jon",
  324. "type": "cross_fields",
  325. "analyzer": "standard", <1>
  326. "fields": [ "first", "last", "*.edge" ]
  327. }
  328. }
  329. --------------------------------------------------
  330. <1> Use the `standard` analyzer for all fields.
  331. which will be executed as:
  332. blended("will", fields: [first, first.edge, last.edge, last])
  333. blended("smith", fields: [first, first.edge, last.edge, last])
  334. ===== `tie_breaker`
  335. By default, each per-term `blended` query will use the best score returned by
  336. any field in a group, then these scores are added together to give the final
  337. score. The `tie_breaker` parameter can change the default behaviour of the
  338. per-term `blended` queries. It accepts:
  339. [horizontal]
  340. `0.0`:: Take the single best score out of (eg) `first_name:will`
  341. and `last_name:will` (*default*)
  342. `1.0`:: Add together the scores for (eg) `first_name:will` and
  343. `last_name:will`
  344. `0.0 < n < 1.0`:: Take the single best score plus +tie_breaker+ multiplied
  345. by each of the scores from other matching fields.