| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 | [role="xpack"][testenv="basic"][[search-aggregations-metrics-rate-aggregation]]=== Rate AggregationA `rate` metrics aggregation can be used only inside a `date_histogram` and calculates a rate of documents or a field in each`date_histogram` bucket.==== SyntaxA `rate` aggregation looks like this in isolation:[source,js]--------------------------------------------------{  "rate": {    "unit": "month",    "field": "requests"  }}--------------------------------------------------// NOTCONSOLEThe following request will group all sales records into monthly bucket and than convert the number of sales transaction in each bucketinto per annual sales rate.[source,console]--------------------------------------------------GET sales/_search{  "size": 0,  "aggs": {    "by_date": {      "date_histogram": {        "field": "date",        "calendar_interval": "month"  <1>      },      "aggs": {        "my_rate": {          "rate": {            "unit": "year"  <2>          }        }      }    }  }}--------------------------------------------------// TEST[setup:sales]<1> Histogram is grouped by month.<2> But the rate is converted into annual rate.The response will return the annual rate of transaction in each bucket. Since there are 12 months per year, the annual rate willbe automatically calculated by multiplying monthly rate by 12.[source,console-result]--------------------------------------------------{  ...  "aggregations" : {    "by_date" : {      "buckets" : [        {          "key_as_string" : "2015/01/01 00:00:00",          "key" : 1420070400000,          "doc_count" : 3,          "my_rate" : {            "value" : 36.0          }        },        {          "key_as_string" : "2015/02/01 00:00:00",          "key" : 1422748800000,          "doc_count" : 2,          "my_rate" : {            "value" : 24.0          }        },        {          "key_as_string" : "2015/03/01 00:00:00",          "key" : 1425168000000,          "doc_count" : 2,          "my_rate" : {            "value" : 24.0          }        }      ]    }  }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]Instead of counting the number of documents, it is also possible to calculate a sum of all values of the fields in the documents in eachbucket. The following request will group all sales records into monthly bucket and than calculate the total monthly sales and convert theminto average daily sales.[source,console]--------------------------------------------------GET sales/_search{  "size": 0,  "aggs": {    "by_date": {      "date_histogram": {        "field": "date",        "calendar_interval": "month"  <1>      },      "aggs": {        "avg_price": {          "rate": {            "field": "price", <2>            "unit": "day"  <3>          }        }      }    }  }}--------------------------------------------------// TEST[setup:sales]<1> Histogram is grouped by month.<2> Calculate sum of all sale prices<3> Convert to average daily salesThe response will contain the average daily sale prices for each month.[source,console-result]--------------------------------------------------{  ...  "aggregations" : {    "by_date" : {      "buckets" : [        {          "key_as_string" : "2015/01/01 00:00:00",          "key" : 1420070400000,          "doc_count" : 3,          "avg_price" : {            "value" : 17.741935483870968          }        },        {          "key_as_string" : "2015/02/01 00:00:00",          "key" : 1422748800000,          "doc_count" : 2,          "avg_price" : {            "value" : 2.142857142857143          }        },        {          "key_as_string" : "2015/03/01 00:00:00",          "key" : 1425168000000,          "doc_count" : 2,          "avg_price" : {            "value" : 12.096774193548388          }        }      ]    }  }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]==== Relationship between bucket sizes and rateThe `rate` aggregation supports all rate that can be used <<calendar_intervals,calendar_intervals parameter>> of `date_histogram`aggregation. The specified rate should compatible with the `date_histogram` aggregation interval, i.e. it should be possible toconvert the bucket size into the rate. By default the interval of the `date_histogram` is used.`"rate": "second"`:: compatible with all intervals`"rate": "minute"`:: compatible with all intervals`"rate": "hour"`:: compatible with all intervals`"rate": "day"`:: compatible with all intervals`"rate": "week"`:: compatible with all intervals`"rate": "month"`:: compatible with only with `month`, `quarter` and `year` calendar intervals`"rate": "quarter"`:: compatible with only with `month`, `quarter` and `year` calendar intervals`"rate": "year"`:: compatible with only with `month`, `quarter` and `year` calendar intervals==== ScriptThe `rate` aggregation also supports scripting. For example, if we need to adjust out prices before calculating rates, we could usea script to recalculate them on-the-fly:[source,console]--------------------------------------------------GET sales/_search{  "size": 0,  "aggs": {    "by_date": {      "date_histogram": {        "field": "date",        "calendar_interval": "month"      },      "aggs": {        "avg_price": {          "rate": {            "script": {  <1>              "lang": "painless",              "source": "doc['price'].value * params.adjustment",              "params": {                "adjustment": 0.9  <2>              }            }          }        }      }    }  }}--------------------------------------------------// TEST[setup:sales]<1> The `field` parameter is replaced with a `script` parameter, which uses thescript to generate values which percentiles are calculated on.<2> Scripting supports parameterized input just like any other script.[source,console-result]--------------------------------------------------{  ...  "aggregations" : {    "by_date" : {      "buckets" : [        {          "key_as_string" : "2015/01/01 00:00:00",          "key" : 1420070400000,          "doc_count" : 3,          "avg_price" : {            "value" : 495.0          }        },        {          "key_as_string" : "2015/02/01 00:00:00",          "key" : 1422748800000,          "doc_count" : 2,          "avg_price" : {            "value" : 54.0          }        },        {          "key_as_string" : "2015/03/01 00:00:00",          "key" : 1425168000000,          "doc_count" : 2,          "avg_price" : {            "value" : 337.5          }        }      ]    }  }}--------------------------------------------------// TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
 |