ml-shared.asciidoc 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712
  1. tag::aggregations[]
  2. If set, the {dfeed} performs aggregation searches. Support for aggregations is
  3. limited and should be used only with low cardinality data. For more information,
  4. see
  5. {ml-docs}/ml-configuring-aggregation.html[Aggregating data for faster performance].
  6. end::aggregations[]
  7. tag::allow-lazy-open[]
  8. Advanced configuration option. Specifies whether this job can open when there is
  9. insufficient {ml} node capacity for it to be immediately assigned to a node. The
  10. default value is `false`; if a {ml} node with capacity to run the job cannot
  11. immediately be found, the <<ml-open-job,open {anomaly-jobs} API>> returns an
  12. error. However, this is also subject to the cluster-wide
  13. `xpack.ml.max_lazy_ml_nodes` setting; see <<advanced-ml-settings>>. If this
  14. option is set to `true`, the <<ml-open-job,open {anomaly-jobs} API>> does not
  15. return an error and the job waits in the `opening` state until sufficient {ml}
  16. node capacity is available.
  17. end::allow-lazy-open[]
  18. tag::allow-no-datafeeds[]
  19. Specifies what to do when the request:
  20. +
  21. --
  22. * Contains wildcard expressions and there are no {dfeeds} that match.
  23. * Contains the `_all` string or no identifiers and there are no matches.
  24. * Contains wildcard expressions and there are only partial matches.
  25. The default value is `true`, which returns an empty `datafeeds` array when
  26. there are no matches and the subset of results when there are partial matches.
  27. If this parameter is `false`, the request returns a `404` status code when there
  28. are no matches or only partial matches.
  29. --
  30. end::allow-no-datafeeds[]
  31. tag::allow-no-jobs[]
  32. Specifies what to do when the request:
  33. +
  34. --
  35. * Contains wildcard expressions and there are no jobs that match.
  36. * Contains the `_all` string or no identifiers and there are no matches.
  37. * Contains wildcard expressions and there are only partial matches.
  38. The default value is `true`, which returns an empty `jobs` array
  39. when there are no matches and the subset of results when there are partial
  40. matches. If this parameter is `false`, the request returns a `404` status code
  41. when there are no matches or only partial matches.
  42. --
  43. end::allow-no-jobs[]
  44. tag::allow-no-match[]
  45. Specifies what to do when the request:
  46. +
  47. --
  48. * Contains wildcard expressions and there are no {dfanalytics-jobs} that match.
  49. * Contains the `_all` string or no identifiers and there are no matches.
  50. * Contains wildcard expressions and there are only partial matches.
  51. The default value is `true`, which returns an empty `data_frame_analytics` array
  52. when there are no matches and the subset of results when there are partial
  53. matches. If this parameter is `false`, the request returns a `404` status code
  54. when there are no matches or only partial matches.
  55. --
  56. end::allow-no-match[]
  57. tag::analysis[]
  58. Defines the type of {dfanalytics} you want to perform on your source index. For
  59. example: `outlier_detection`. See <<ml-dfa-analysis-objects>>.
  60. end::analysis[]
  61. tag::analysis-config[]
  62. The analysis configuration, which specifies how to analyze the data. After you
  63. create a job, you cannot change the analysis configuration; all the properties
  64. are informational.
  65. end::analysis-config[]
  66. tag::analysis-limits[]
  67. Limits can be applied for the resources required to hold the mathematical models
  68. in memory. These limits are approximate and can be set per job. They do not
  69. control the memory used by other processes, for example the {es} Java processes.
  70. end::analysis-limits[]
  71. tag::assignment-explanation-anomaly-jobs[]
  72. For open {anomaly-jobs} only, contains messages relating to the selection
  73. of a node to run the job.
  74. end::assignment-explanation-anomaly-jobs[]
  75. tag::assignment-explanation-datafeeds[]
  76. For started {dfeeds} only, contains messages relating to the selection of a
  77. node.
  78. end::assignment-explanation-datafeeds[]
  79. tag::assignment-explanation-dfanalytics[]
  80. Contains messages relating to the selection of a node.
  81. end::assignment-explanation-dfanalytics[]
  82. tag::background-persist-interval[]
  83. Advanced configuration option. The time between each periodic persistence of the
  84. model. The default value is a randomized value between 3 to 4 hours, which
  85. avoids all jobs persisting at exactly the same time. The smallest allowed value
  86. is 1 hour.
  87. +
  88. --
  89. TIP: For very large models (several GB), persistence could take 10-20 minutes,
  90. so do not set the `background_persist_interval` value too low.
  91. --
  92. end::background-persist-interval[]
  93. tag::bucket-allocation-failures-count[]
  94. The number of buckets for which new entities in incoming data were not processed
  95. due to insufficient model memory. This situation is also signified by a
  96. `hard_limit: memory_status` property value.
  97. end::bucket-allocation-failures-count[]
  98. tag::bucket-count[]
  99. The number of buckets processed.
  100. end::bucket-count[]
  101. tag::bucket-count-anomaly-jobs[]
  102. The number of bucket results produced by the job.
  103. end::bucket-count-anomaly-jobs[]
  104. tag::bucket-span[]
  105. The size of the interval that the analysis is aggregated into, typically between
  106. `5m` and `1h`. The default value is `5m`. If the {anomaly-job} uses a {dfeed}
  107. with {ml-docs}/ml-configuring-aggregation.html[aggregations], this value must be
  108. divisible by the interval of the date histogram aggregation. For more
  109. information, see {ml-docs}/ml-buckets.html[Buckets].
  110. end::bucket-span[]
  111. tag::bucket-span-results[]
  112. The length of the bucket in seconds. This value matches the `bucket_span`
  113. that is specified in the job.
  114. end::bucket-span-results[]
  115. tag::bucket-time-exponential-average[]
  116. Exponential moving average of all bucket processing times, in milliseconds.
  117. end::bucket-time-exponential-average[]
  118. tag::bucket-time-exponential-average-hour[]
  119. Exponentially-weighted moving average of bucket processing times
  120. calculated in a 1 hour time window, in milliseconds.
  121. end::bucket-time-exponential-average-hour[]
  122. tag::bucket-time-maximum[]
  123. Maximum among all bucket processing times, in milliseconds.
  124. end::bucket-time-maximum[]
  125. tag::bucket-time-minimum[]
  126. Minimum among all bucket processing times, in milliseconds.
  127. end::bucket-time-minimum[]
  128. tag::bucket-time-total[]
  129. Sum of all bucket processing times, in milliseconds.
  130. end::bucket-time-total[]
  131. tag::by-field-name[]
  132. The field used to split the data. In particular, this property is used for
  133. analyzing the splits with respect to their own history. It is used for finding
  134. unusual values in the context of the split.
  135. end::by-field-name[]
  136. tag::calendar-id[]
  137. A string that uniquely identifies a calendar.
  138. end::calendar-id[]
  139. tag::categorization-analyzer[]
  140. If `categorization_field_name` is specified, you can also define the analyzer
  141. that is used to interpret the categorization field. This property cannot be used
  142. at the same time as `categorization_filters`. The categorization analyzer
  143. specifies how the `categorization_field` is interpreted by the categorization
  144. process. The syntax is very similar to that used to define the `analyzer` in the
  145. <<indices-analyze,Analyze endpoint>>. For more information, see
  146. {ml-docs}/ml-configuring-categories.html[Categorizing log messages].
  147. +
  148. The `categorization_analyzer` field can be specified either as a string or as an
  149. object. If it is a string it must refer to a
  150. <<analysis-analyzers,built-in analyzer>> or one added by another plugin. If it
  151. is an object it has the following properties:
  152. +
  153. .Properties of `categorization_analyzer`
  154. [%collapsible%open]
  155. =====
  156. `char_filter`::::
  157. (array of strings or objects)
  158. include::{docdir}/ml/ml-shared.asciidoc[tag=char-filter]
  159. `tokenizer`::::
  160. (string or object)
  161. include::{docdir}/ml/ml-shared.asciidoc[tag=tokenizer]
  162. `filter`::::
  163. (array of strings or objects)
  164. include::{docdir}/ml/ml-shared.asciidoc[tag=filter]
  165. =====
  166. end::categorization-analyzer[]
  167. tag::categorization-examples-limit[]
  168. The maximum number of examples stored per category in memory and in the results
  169. data store. The default value is 4. If you increase this value, more examples
  170. are available, however it requires that you have more storage available. If you
  171. set this value to `0`, no examples are stored.
  172. +
  173. NOTE: The `categorization_examples_limit` only applies to analysis that uses
  174. categorization. For more information, see
  175. {ml-docs}/ml-configuring-categories.html[Categorizing log messages].
  176. end::categorization-examples-limit[]
  177. tag::categorization-field-name[]
  178. If this property is specified, the values of the specified field will be
  179. categorized. The resulting categories must be used in a detector by setting
  180. `by_field_name`, `over_field_name`, or `partition_field_name` to the keyword
  181. `mlcategory`. For more information, see
  182. {ml-docs}/ml-configuring-categories.html[Categorizing log messages].
  183. end::categorization-field-name[]
  184. tag::categorization-filters[]
  185. If `categorization_field_name` is specified, you can also define optional
  186. filters. This property expects an array of regular expressions. The expressions
  187. are used to filter out matching sequences from the categorization field values.
  188. You can use this functionality to fine tune the categorization by excluding
  189. sequences from consideration when categories are defined. For example, you can
  190. exclude SQL statements that appear in your log files. For more information, see
  191. {ml-docs}/ml-configuring-categories.html[Categorizing log messages]. This
  192. property cannot be used at the same time as `categorization_analyzer`. If you
  193. only want to define simple regular expression filters that are applied prior to
  194. tokenization, setting this property is the easiest method. If you also want to
  195. customize the tokenizer or post-tokenization filtering, use the
  196. `categorization_analyzer` property instead and include the filters as
  197. `pattern_replace` character filters. The effect is exactly the same.
  198. end::categorization-filters[]
  199. tag::categorization-status[]
  200. The status of categorization for the job. Contains one of the following values:
  201. +
  202. --
  203. * `ok`: Categorization is performing acceptably well (or not being used at all).
  204. * `warn`: Categorization is detecting a distribution of categories that suggests
  205. the input data is inappropriate for categorization. Problems could be that there
  206. is only one category, more than 90% of categories are rare, the number of
  207. categories is greater than 50% of the number of categorized documents, there are
  208. no frequently matched categories, or more than 50% of categories are dead.
  209. --
  210. end::categorization-status[]
  211. tag::categorized-doc-count[]
  212. The number of documents that have had a field categorized.
  213. end::categorized-doc-count[]
  214. tag::char-filter[]
  215. One or more <<analysis-charfilters,character filters>>. In addition to the
  216. built-in character filters, other plugins can provide more character filters.
  217. This property is optional. If it is not specified, no character filters are
  218. applied prior to categorization. If you are customizing some other aspect of the
  219. analyzer and you need to achieve the equivalent of `categorization_filters`
  220. (which are not permitted when some other aspect of the analyzer is customized),
  221. add them here as
  222. <<analysis-pattern-replace-charfilter,pattern replace character filters>>.
  223. end::char-filter[]
  224. tag::chunking-config[]
  225. {dfeeds-cap} might be required to search over long time periods, for several
  226. months or years. This search is split into time chunks in order to ensure the
  227. load on {es} is managed. Chunking configuration controls how the size of these
  228. time chunks are calculated and is an advanced configuration option.
  229. +
  230. .Properties of `chunking_config`
  231. [%collapsible%open]
  232. ====
  233. `mode`:::
  234. (string)
  235. include::{docdir}/ml/ml-shared.asciidoc[tag=mode]
  236. `time_span`:::
  237. (<<time-units,time units>>)
  238. include::{docdir}/ml/ml-shared.asciidoc[tag=time-span]
  239. ====
  240. end::chunking-config[]
  241. tag::custom-rules[]
  242. An array of custom rule objects, which enable you to customize the way detectors
  243. operate. For example, a rule may dictate to the detector conditions under which
  244. results should be skipped. For more examples, see
  245. {ml-docs}/ml-configuring-detector-custom-rules.html[Customizing detectors with custom rules].
  246. end::custom-rules[]
  247. tag::custom-rules-actions[]
  248. The set of actions to be triggered when the rule applies. If
  249. more than one action is specified the effects of all actions are combined. The
  250. available actions include:
  251. * `skip_result`: The result will not be created. This is the default value.
  252. Unless you also specify `skip_model_update`, the model will be updated as usual
  253. with the corresponding series value.
  254. * `skip_model_update`: The value for that series will not be used to update the
  255. model. Unless you also specify `skip_result`, the results will be created as
  256. usual. This action is suitable when certain values are expected to be
  257. consistently anomalous and they affect the model in a way that negatively
  258. impacts the rest of the results.
  259. end::custom-rules-actions[]
  260. tag::custom-rules-scope[]
  261. An optional scope of series where the rule applies. A rule must either
  262. have a non-empty scope or at least one condition. By default, the scope includes
  263. all series. Scoping is allowed for any of the fields that are also specified in
  264. `by_field_name`, `over_field_name`, or `partition_field_name`. To add a scope
  265. for a field, add the field name as a key in the scope object and set its value
  266. to an object with the following properties:
  267. end::custom-rules-scope[]
  268. tag::custom-rules-scope-filter-id[]
  269. The id of the filter to be used.
  270. end::custom-rules-scope-filter-id[]
  271. tag::custom-rules-scope-filter-type[]
  272. Either `include` (the rule applies for values in the filter) or `exclude` (the
  273. rule applies for values not in the filter). Defaults to `include`.
  274. end::custom-rules-scope-filter-type[]
  275. tag::custom-rules-conditions[]
  276. An optional array of numeric conditions when the rule applies. A rule must
  277. either have a non-empty scope or at least one condition. Multiple conditions are
  278. combined together with a logical `AND`. A condition has the following
  279. properties:
  280. end::custom-rules-conditions[]
  281. tag::custom-rules-conditions-applies-to[]
  282. Specifies the result property to which the condition applies. The available
  283. options are `actual`, `typical`, `diff_from_typical`, `time`. If your detector
  284. uses `lat_long`, `metric`, `rare`, or `freq_rare` functions, you can only
  285. specify conditions that apply to `time`.
  286. end::custom-rules-conditions-applies-to[]
  287. tag::custom-rules-conditions-operator[]
  288. Specifies the condition operator. The available options are `gt` (greater than),
  289. `gte` (greater than or equals), `lt` (less than) and `lte` (less than or
  290. equals).
  291. end::custom-rules-conditions-operator[]
  292. tag::custom-rules-conditions-value[]
  293. The value that is compared against the `applies_to` field using the `operator`.
  294. end::custom-rules-conditions-value[]
  295. tag::custom-settings[]
  296. Advanced configuration option. Contains custom meta data about the job. For
  297. example, it can contain custom URL information as shown in
  298. {ml-docs}/ml-configuring-url.html[Adding custom URLs to {ml} results].
  299. end::custom-settings[]
  300. tag::data-description[]
  301. The data description defines the format of the input data when you send data to
  302. the job by using the <<ml-post-data,post data>> API. Note that when configure
  303. a {dfeed}, these properties are automatically set. When data is received via
  304. the <<ml-post-data,post data>> API, it is not stored in {es}. Only the results
  305. for {anomaly-detect} are retained.
  306. +
  307. .Properties of `data_description`
  308. [%collapsible%open]
  309. ====
  310. `format`:::
  311. (string) Only `JSON` format is supported at this time.
  312. `time_field`:::
  313. (string) The name of the field that contains the timestamp.
  314. The default value is `time`.
  315. `time_format`:::
  316. (string)
  317. include::{docdir}/ml/ml-shared.asciidoc[tag=time-format]
  318. ====
  319. end::data-description[]
  320. tag::data-frame-analytics-stats[]
  321. An array of statistics objects for {dfanalytics-jobs}, which are
  322. sorted by the `id` value in ascending order.
  323. //Begin analysis_stats
  324. `analysis_stats`::
  325. (object)
  326. An object containing statistical data about the analysis.
  327. +
  328. .Properties of `analysis_stats`
  329. [%collapsible%open]
  330. ====
  331. //Begin classification_stats
  332. `classification_stats`:::
  333. (object)
  334. An object containing statistical data about the {classanalysis}.
  335. +
  336. .Properties of `classification_stats`
  337. [%collapsible%open]
  338. =====
  339. //Begin class_hyperparameters
  340. `hyperparameters`::::
  341. (object)
  342. An object containing the parameters of the {classanalysis}.
  343. +
  344. .Properties of `hyperparameters`
  345. [%collapsible%open]
  346. ======
  347. tag::dfas-alpha[]
  348. `alpha`::::
  349. (double)
  350. Regularization factor to penalize deeper trees when training decision trees.
  351. end::dfas-alpha[]
  352. `class_assignment_objective`::::
  353. (string)
  354. Defines whether class assignment maximizes the accuracy or the minimum recall
  355. metric. Possible values are `maximize_accuracy` and `maximize_minimum_recall`.
  356. tag::dfas-downsample-factor[]
  357. `downsample_factor`::::
  358. (double)
  359. The value of the downsample factor.
  360. end::dfas-downsample-factor[]
  361. tag::dfas-eta[]
  362. `eta`::::
  363. (double)
  364. The value of the eta hyperparameter.
  365. end::dfas-eta[]
  366. tag::dfas-eta-growth[]
  367. `eta_growth_rate_per_tree`::::
  368. (double)
  369. Specifies the rate at which the `eta` increases for each new tree that is added to the
  370. forest. For example, a rate of `1.05` increases `eta` by 5%.
  371. end::dfas-eta-growth[]
  372. tag::dfas-feature-bag-fraction[]
  373. `feature_bag_fraction`::::
  374. (double)
  375. The fraction of features that is used when selecting a random bag for each
  376. candidate split.
  377. end::dfas-feature-bag-fraction[]
  378. tag::dfas-gamma[]
  379. `gamma`::::
  380. (double)
  381. Regularization factor to penalize trees with large numbers of nodes.
  382. end::dfas-gamma[]
  383. tag::dfas-lambda[]
  384. `lambda`::::
  385. (double)
  386. Regularization factor to penalize large leaf weights.
  387. end::dfas-lambda[]
  388. tag::dfas-max-attempts[]
  389. `max_attempts_to_add_tree`::::
  390. (integer)
  391. If the algorithm fails to determine a non-trivial tree (more than a single
  392. leaf), this parameter determines how many of such consecutive failures are
  393. tolerated. Once the number of attempts exceeds the threshold, the forest
  394. training stops.
  395. end::dfas-max-attempts[]
  396. tag::dfas-max-optimization-rounds[]
  397. `max_optimization_rounds_per_hyperparameter`::::
  398. (integer)
  399. A multiplier responsible for determining the maximum number of
  400. hyperparameter optimization steps in the Bayesian optimization procedure.
  401. The maximum number of steps is determined based on the number of undefined hyperparameters
  402. times the maximum optimization rounds per hyperparameter.
  403. end::dfas-max-optimization-rounds[]
  404. tag::dfas-max-trees[]
  405. `max_trees`::::
  406. (integer)
  407. The maximum number of trees in the forest.
  408. end::dfas-max-trees[]
  409. tag::dfas-num-folds[]
  410. `num_folds`::::
  411. (integer)
  412. The maximum number of folds for the cross-validation procedure.
  413. end::dfas-num-folds[]
  414. tag::dfas-num-splits[]
  415. `num_splits_per_feature`::::
  416. (integer)
  417. Determines the maximum number of splits for every feature that can occur in a
  418. decision tree when the tree is trained.
  419. end::dfas-num-splits[]
  420. tag::dfas-soft-limit[]
  421. `soft_tree_depth_limit`::::
  422. (double)
  423. Tree depth limit is used for calculating the tree depth penalty. This is a soft
  424. limit, it can be exceeded.
  425. end::dfas-soft-limit[]
  426. tag::dfas-soft-tolerance[]
  427. `soft_tree_depth_tolerance`::::
  428. (double)
  429. Tree depth tolerance is used for calculating the tree depth penalty. This is a
  430. soft limit, it can be exceeded.
  431. end::dfas-soft-tolerance[]
  432. ======
  433. //End class_hyperparameters
  434. tag::dfas-iteration[]
  435. `iteration`::::
  436. (integer)
  437. The number of iterations on the analysis.
  438. end::dfas-iteration[]
  439. tag::dfas-timestamp[]
  440. `timestamp`::::
  441. (date)
  442. The timestamp when the statistics were reported in milliseconds since the epoch.
  443. end::dfas-timestamp[]
  444. //Begin class_timing_stats
  445. tag::dfas-timing-stats[]
  446. `timing_stats`::::
  447. (object)
  448. An object containing time statistics about the {dfanalytics-job}.
  449. end::dfas-timing-stats[]
  450. +
  451. .Properties of `timing_stats`
  452. [%collapsible%open]
  453. ======
  454. tag::dfas-timing-stats-elapsed[]
  455. `elapsed_time`::::
  456. (integer)
  457. Runtime of the analysis in milliseconds.
  458. end::dfas-timing-stats-elapsed[]
  459. tag::dfas-timing-stats-iteration[]
  460. `iteration_time`::::
  461. (integer)
  462. Runtime of the latest iteration of the analysis in milliseconds.
  463. end::dfas-timing-stats-iteration[]
  464. ======
  465. //End class_timing_stats
  466. //Begin class_validation_loss
  467. tag::dfas-validation-loss[]
  468. `validation_loss`::::
  469. (object)
  470. An object containing information about validation loss.
  471. end::dfas-validation-loss[]
  472. +
  473. .Properties of `validation_loss`
  474. [%collapsible%open]
  475. ======
  476. tag::dfas-validation-loss-type[]
  477. `loss_type`::::
  478. (string)
  479. The type of the loss metric. For example, `binomial_logistic`.
  480. end::dfas-validation-loss-type[]
  481. tag::dfas-validation-loss-fold[]
  482. `fold_values`::::
  483. (array of strings)
  484. Validation loss values for every added decision tree during the forest growing
  485. procedure.
  486. end::dfas-validation-loss-fold[]
  487. ======
  488. //End class_validation_loss
  489. =====
  490. //End classification_stats
  491. //Begin outlier_detection_stats
  492. `outlier_detection_stats`:::
  493. (object)
  494. An object containing statistical data about the {oldetection} job.
  495. +
  496. .Properties of `outlier_detection_stats`
  497. [%collapsible%open]
  498. =====
  499. //Begin parameters
  500. `parameters`::::
  501. (object)
  502. The list of job parameters specified by the user or determined by algorithmic
  503. heuristics.
  504. +
  505. .Properties of `parameters`
  506. [%collapsible%open]
  507. ======
  508. `compute_feature_influence`::::
  509. (boolean)
  510. If true, feature influence calculation is enabled.
  511. `feature_influence_threshold`::::
  512. (double)
  513. The minimum {olscore} that a document needs to have to calculate its feature
  514. influence score.
  515. `method`::::
  516. (string)
  517. The method that {oldetection} uses. Possible values are `lof`, `ldof`,
  518. `distance_kth_nn`, `distance_knn`, and `ensemble`.
  519. `n_neighbors`::::
  520. (integer)
  521. The value for how many nearest neighbors each method of {oldetection} uses to
  522. calculate its outlier score.
  523. `outlier_fraction`::::
  524. (double)
  525. The proportion of the data set that is assumed to be outlying prior to
  526. {oldetection}.
  527. `standardization_enabled`::::
  528. (boolean)
  529. If true, then the following operation is performed on the columns before
  530. computing {olscores}: (x_i - mean(x_i)) / sd(x_i).
  531. ======
  532. //End parameters
  533. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
  534. //Begin od_timing_stats
  535. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
  536. +
  537. .Property of `timing_stats`
  538. [%collapsible%open]
  539. ======
  540. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
  541. ======
  542. //End od_timing_stats
  543. =====
  544. //End outlier_detection_stats
  545. //Begin regression_stats
  546. `regression_stats`:::
  547. (object)
  548. An object containing statistical data about the {reganalysis}.
  549. +
  550. .Properties of `regression_stats`
  551. [%collapsible%open]
  552. =====
  553. //Begin reg_hyperparameters
  554. `hyperparameters`::::
  555. (object)
  556. An object containing the parameters of the {reganalysis}.
  557. +
  558. .Properties of `hyperparameters`
  559. [%collapsible%open]
  560. ======
  561. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-alpha]
  562. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-downsample-factor]
  563. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta]
  564. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta-growth]
  565. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-feature-bag-fraction]
  566. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-gamma]
  567. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-lambda]
  568. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-attempts]
  569. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-optimization-rounds]
  570. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-trees]
  571. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-folds]
  572. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-splits]
  573. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-limit]
  574. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-tolerance]
  575. ======
  576. //End reg_hyperparameters
  577. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-iteration]
  578. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
  579. //Begin reg_timing_stats
  580. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
  581. +
  582. .Propertis of `timing_stats`
  583. [%collapsible%open]
  584. ======
  585. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
  586. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-iteration]
  587. ======
  588. //End reg_timing_stats
  589. //Begin reg_validation_loss
  590. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss]
  591. +
  592. .Properties of `validation_loss`
  593. [%collapsible%open]
  594. ======
  595. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-type]
  596. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-fold]
  597. ======
  598. //End reg_validation_loss
  599. =====
  600. //End regression_stats
  601. ====
  602. //End analysis_stats
  603. `assignment_explanation`:::
  604. (string)
  605. For running jobs only, contains messages relating to the selection of a node to
  606. run the job.
  607. //Begin data_counts
  608. `data_counts`:::
  609. (object)
  610. An object containing statistical data about the documents in the analysis.
  611. +
  612. .Properties of `data_counts`
  613. [%collapsible%open]
  614. ====
  615. `skipped_docs_count`:::
  616. (integer)
  617. The number of documents that are skipped during the analysis because they
  618. contained values that are not supported by the analysis. For example,
  619. {oldetection} does not support missing fields so it skips documents with missing
  620. fields. Likewise, all types of analysis skip documents that contain arrays with
  621. more than one element.
  622. `test_docs_count`:::
  623. (integer)
  624. The number of documents that are not used for training the model and can be used
  625. for testing.
  626. `training_docs_count`:::
  627. (integer)
  628. The number of documents that are used for training the model.
  629. ====
  630. //End data_counts
  631. `id`:::
  632. (string)
  633. The unique identifier of the {dfanalytics-job}.
  634. `memory_usage`:::
  635. (Optional, object)
  636. An object describing memory usage of the analytics. It is present only after the
  637. job is started and memory usage is reported.
  638. `memory_usage`.`peak_usage_bytes`:::
  639. (long)
  640. The number of bytes used at the highest peak of memory usage.
  641. `memory_usage`.`timestamp`:::
  642. (date)
  643. The timestamp when memory usage was calculated.
  644. `node`:::
  645. (object)
  646. Contains properties for the node that runs the job. This information is
  647. available only for running jobs.
  648. `node`.`attributes`:::
  649. (object)
  650. Lists node attributes such as `ml.machine_memory`, `ml.max_open_jobs`, and
  651. `xpack.installed`.
  652. `node`.`ephemeral_id`:::
  653. (string)
  654. The ephemeral id of the node.
  655. `node`.`id`:::
  656. (string)
  657. The unique identifier of the node.
  658. `node`.`name`:::
  659. (string)
  660. The node name.
  661. `node`.`transport_address`:::
  662. (string)
  663. The host and port where transport HTTP connections are accepted.
  664. `progress`:::
  665. (array) The progress report of the {dfanalytics-job} by phase.
  666. `progress`.`phase`:::
  667. (string) Defines the phase of the {dfanalytics-job}. Possible phases:
  668. `reindexing`, `loading_data`, `analyzing`, and `writing_results`.
  669. `progress`.`progress_percent`:::
  670. (integer) The progress that the {dfanalytics-job} has made expressed in
  671. percentage.
  672. `state`:::
  673. (string) Current state of the {dfanalytics-job}.
  674. end::data-frame-analytics-stats[]
  675. tag::datafeed-id[]
  676. A numerical character string that uniquely identifies the
  677. {dfeed}. This identifier can contain lowercase alphanumeric characters (a-z
  678. and 0-9), hyphens, and underscores. It must start and end with alphanumeric
  679. characters.
  680. end::datafeed-id[]
  681. tag::datafeed-id-wildcard[]
  682. Identifier for the {dfeed}. It can be a {dfeed} identifier or a wildcard
  683. expression.
  684. end::datafeed-id-wildcard[]
  685. tag::dead-category-count[]
  686. The number of categories created by categorization that will never be assigned
  687. again because another category's definition makes it a superset of the dead
  688. category. (Dead categories are a side effect of the way categorization has no
  689. prior training.)
  690. end::dead-category-count[]
  691. tag::delayed-data-check-config[]
  692. Specifies whether the {dfeed} checks for missing data and the size of the
  693. window. For example: `{"enabled": true, "check_window": "1h"}`.
  694. +
  695. The {dfeed} can optionally search over indices that have already been read in
  696. an effort to determine whether any data has subsequently been added to the
  697. index. If missing data is found, it is a good indication that the `query_delay`
  698. option is set too low and the data is being indexed after the {dfeed} has passed
  699. that moment in time. See
  700. {ml-docs}/ml-delayed-data-detection.html[Working with delayed data].
  701. +
  702. This check runs only on real-time {dfeeds}.
  703. +
  704. .Properties of `delayed_data_check_config`
  705. [%collapsible%open]
  706. ====
  707. `check_window`::
  708. (<<time-units,time units>>) The window of time that is searched for late data.
  709. This window of time ends with the latest finalized bucket. It defaults to
  710. `null`, which causes an appropriate `check_window` to be calculated when the
  711. real-time {dfeed} runs. In particular, the default `check_window` span
  712. calculation is based on the maximum of `2h` or `8 * bucket_span`.
  713. `enabled`::
  714. (boolean) Specifies whether the {dfeed} periodically checks for delayed data.
  715. Defaults to `true`.
  716. ====
  717. end::delayed-data-check-config[]
  718. tag::dependent-variable[]
  719. Defines which field of the document is to be predicted.
  720. This parameter is supplied by field name and must match one of the fields in
  721. the index being used to train. If this field is missing from a document, then
  722. that document will not be used for training, but a prediction with the trained
  723. model will be generated for it. It is also known as continuous target variable.
  724. end::dependent-variable[]
  725. tag::desc-results[]
  726. If true, the results are sorted in descending order.
  727. end::desc-results[]
  728. tag::description-dfa[]
  729. A description of the job.
  730. end::description-dfa[]
  731. tag::dest[]
  732. The destination configuration, consisting of `index` and optionally
  733. `results_field` (`ml` by default).
  734. +
  735. .Properties of `dest`
  736. [%collapsible%open]
  737. ====
  738. `index`:::
  739. (Required, string) Defines the _destination index_ to store the results of the
  740. {dfanalytics-job}.
  741. `results_field`:::
  742. (Optional, string) Defines the name of the field in which to store the results
  743. of the analysis. Defaults to `ml`.
  744. ====
  745. end::dest[]
  746. tag::detector-description[]
  747. A description of the detector. For example, `Low event rate`.
  748. end::detector-description[]
  749. tag::detector-field-name[]
  750. The field that the detector uses in the function. If you use an event rate
  751. function such as `count` or `rare`, do not specify this field.
  752. +
  753. --
  754. NOTE: The `field_name` cannot contain double quotes or backslashes.
  755. --
  756. end::detector-field-name[]
  757. tag::detector-index[]
  758. A unique identifier for the detector. This identifier is based on the order of
  759. the detectors in the `analysis_config`, starting at zero.
  760. end::detector-index[]
  761. tag::dfas-alpha[]
  762. Regularization factor to penalize deeper trees when training decision trees.
  763. end::dfas-alpha[]
  764. tag::dfas-downsample-factor[]
  765. The value of the downsample factor.
  766. end::dfas-downsample-factor[]
  767. tag::dfas-eta[]
  768. The value of the eta hyperparameter.
  769. end::dfas-eta[]
  770. tag::dfas-eta-growth[]
  771. Specifies the rate at which the `eta` increases for each new tree that is added
  772. to the forest. For example, a rate of `1.05` increases `eta` by 5%.
  773. end::dfas-eta-growth[]
  774. tag::dfas-feature-bag-fraction[]
  775. The fraction of features that is used when selecting a random bag for each
  776. candidate split.
  777. end::dfas-feature-bag-fraction[]
  778. tag::dfas-gamma[]
  779. Regularization factor to penalize trees with large numbers of nodes.
  780. end::dfas-gamma[]
  781. tag::dfas-lambda[]
  782. Regularization factor to penalize large leaf weights.
  783. end::dfas-lambda[]
  784. tag::dfas-max-attempts[]
  785. If the algorithm fails to determine a non-trivial tree (more than a single
  786. leaf), this parameter determines how many of such consecutive failures are
  787. tolerated. Once the number of attempts exceeds the threshold, the forest
  788. training stops.
  789. end::dfas-max-attempts[]
  790. tag::dfas-max-optimization-rounds[]
  791. A multiplier responsible for determining the maximum number of
  792. hyperparameter optimization steps in the Bayesian optimization procedure.
  793. The maximum number of steps is determined based on the number of undefined
  794. hyperparameters times the maximum optimization rounds per hyperparameter.
  795. end::dfas-max-optimization-rounds[]
  796. tag::dfas-max-trees[]
  797. The maximum number of trees in the forest.
  798. end::dfas-max-trees[]
  799. tag::dfas-num-folds[]
  800. The maximum number of folds for the cross-validation procedure.
  801. end::dfas-num-folds[]
  802. tag::dfas-num-splits[]
  803. Determines the maximum number of splits for every feature that can occur in a
  804. decision tree when the tree is trained.
  805. end::dfas-num-splits[]
  806. tag::dfas-soft-limit[]
  807. Tree depth limit is used for calculating the tree depth penalty. This is a soft
  808. limit, it can be exceeded.
  809. end::dfas-soft-limit[]
  810. tag::dfas-soft-tolerance[]
  811. Tree depth tolerance is used for calculating the tree depth penalty. This is a
  812. soft limit, it can be exceeded.
  813. end::dfas-soft-tolerance[]
  814. tag::dfas-iteration[]
  815. The number of iterations on the analysis.
  816. end::dfas-iteration[]
  817. tag::dfas-timestamp[]
  818. The timestamp when the statistics were reported in milliseconds since the epoch.
  819. end::dfas-timestamp[]
  820. tag::dfas-timing-stats[]
  821. An object containing time statistics about the {dfanalytics-job}.
  822. end::dfas-timing-stats[]
  823. tag::dfas-timing-stats-elapsed[]
  824. Runtime of the analysis in milliseconds.
  825. end::dfas-timing-stats-elapsed[]
  826. tag::dfas-timing-stats-iteration[]
  827. Runtime of the latest iteration of the analysis in milliseconds.
  828. end::dfas-timing-stats-iteration[]
  829. tag::dfas-validation-loss[]
  830. An object containing information about validation loss.
  831. end::dfas-validation-loss[]
  832. tag::dfas-validation-loss-fold[]
  833. Validation loss values for every added decision tree during the forest growing
  834. procedure.
  835. end::dfas-validation-loss-fold[]
  836. tag::dfas-validation-loss-type[]
  837. The type of the loss metric. For example, `binomial_logistic`.
  838. end::dfas-validation-loss-type[]
  839. tag::earliest-record-timestamp[]
  840. The timestamp of the earliest chronologically input document.
  841. end::earliest-record-timestamp[]
  842. tag::empty-bucket-count[]
  843. The number of buckets which did not contain any data. If your data
  844. contains many empty buckets, consider increasing your `bucket_span` or using
  845. functions that are tolerant to gaps in data such as `mean`, `non_null_sum` or
  846. `non_zero_count`.
  847. end::empty-bucket-count[]
  848. tag::eta[]
  849. Advanced configuration option. The shrinkage applied to the weights. Smaller
  850. values result in larger forests which have a better generalization error. However,
  851. the smaller the value the longer the training will take. For more information
  852. about shrinkage, see
  853. https://en.wikipedia.org/wiki/Gradient_boosting#Shrinkage[this wiki article].
  854. end::eta[]
  855. tag::exclude-frequent[]
  856. Contains one of the following values: `all`, `none`, `by`, or `over`. If set,
  857. frequent entities are excluded from influencing the anomaly results. Entities
  858. can be considered frequent over time or frequent in a population. If you are
  859. working with both over and by fields, then you can set `exclude_frequent` to
  860. `all` for both fields, or to `by` or `over` for those specific fields.
  861. end::exclude-frequent[]
  862. tag::exclude-interim-results[]
  863. If `true`, the output excludes interim results. By default, interim results are
  864. included.
  865. end::exclude-interim-results[]
  866. tag::feature-bag-fraction[]
  867. Advanced configuration option. Defines the fraction of features that will be
  868. used when selecting a random bag for each candidate split.
  869. end::feature-bag-fraction[]
  870. tag::filter[]
  871. One or more <<analysis-tokenfilters,token filters>>. In addition to the built-in
  872. token filters, other plugins can provide more token filters. This property is
  873. optional. If it is not specified, no token filters are applied prior to
  874. categorization.
  875. end::filter[]
  876. tag::filter-id[]
  877. A string that uniquely identifies a filter.
  878. end::filter-id[]
  879. tag::forecast-total[]
  880. The number of individual forecasts currently available for the job. A value of
  881. `1` or more indicates that forecasts exist.
  882. end::forecast-total[]
  883. tag::frequency[]
  884. The interval at which scheduled queries are made while the {dfeed} runs in real
  885. time. The default value is either the bucket span for short bucket spans, or,
  886. for longer bucket spans, a sensible fraction of the bucket span. For example:
  887. `150s`. When `frequency` is shorter than the bucket span, interim results for
  888. the last (partial) bucket are written then eventually overwritten by the full
  889. bucket results. If the {dfeed} uses aggregations, this value must be divisible
  890. by the interval of the date histogram aggregation.
  891. end::frequency[]
  892. tag::frequent-category-count[]
  893. The number of categories that match more than 1% of categorized documents.
  894. end::frequent-category-count[]
  895. tag::from[]
  896. Skips the specified number of {dfanalytics-jobs}. The default value is `0`.
  897. end::from[]
  898. tag::function[]
  899. The analysis function that is used. For example, `count`, `rare`, `mean`, `min`,
  900. `max`, and `sum`. For more information, see
  901. {ml-docs}/ml-functions.html[Function reference].
  902. end::function[]
  903. tag::gamma[]
  904. Advanced configuration option. Regularization parameter to prevent overfitting
  905. on the training data set. Multiplies a linear penalty associated with the size of
  906. individual trees in the forest. The higher the value the more training will
  907. prefer smaller trees. The smaller this parameter the larger individual trees
  908. will be and the longer training will take.
  909. end::gamma[]
  910. tag::groups[]
  911. A list of job groups. A job can belong to no groups or many.
  912. end::groups[]
  913. tag::indices[]
  914. An array of index names. Wildcards are supported. For example:
  915. `["it_ops_metrics", "server*"]`.
  916. +
  917. --
  918. NOTE: If any indices are in remote clusters then `node.remote_cluster_client`
  919. must not be set to `false` on any {ml} nodes.
  920. --
  921. end::indices[]
  922. tag::indices-options[]
  923. Specifies index expansion options that are used during search.
  924. +
  925. --
  926. For example:
  927. ```
  928. {
  929. "expand_wildcards": ["all"],
  930. "ignore_unavailable": true,
  931. "allow_no_indices": "false",
  932. "ignore_throttled": true
  933. }
  934. ```
  935. For more information about these options, see <<multi-index>>.
  936. --
  937. end::indices-options[]
  938. tag::inference-config-classification-num-top-classes[]
  939. Specifies the number of top class predictions to return. Defaults to 0.
  940. end::inference-config-classification-num-top-classes[]
  941. tag::inference-config-classification-num-top-feature-importance-values[]
  942. Specifies the maximum number of
  943. {ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature
  944. importance] values per document. By default, it is zero and no feature
  945. importance calculation occurs.
  946. end::inference-config-classification-num-top-feature-importance-values[]
  947. tag::inference-config-classification-top-classes-results-field[]
  948. Specifies the field to which the top classes are written. Defaults to
  949. `top_classes`.
  950. end::inference-config-classification-top-classes-results-field[]
  951. tag::inference-config-regression-num-top-feature-importance-values[]
  952. Specifies the maximum number of
  953. {ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature
  954. importance] values per document. By default, it is zero and no feature importance
  955. calculation occurs.
  956. end::inference-config-regression-num-top-feature-importance-values[]
  957. tag::inference-config-results-field[]
  958. The field that is added to incoming documents to contain the inference
  959. prediction. Defaults to `predicted_value`.
  960. end::inference-config-results-field[]
  961. tag::influencers[]
  962. A comma separated list of influencer field names. Typically these can be the by,
  963. over, or partition fields that are used in the detector configuration. You might
  964. also want to use a field name that is not specifically named in a detector, but
  965. is available as part of the input data. When you use multiple detectors, the use
  966. of influencers is recommended as it aggregates results for each influencer
  967. entity.
  968. end::influencers[]
  969. tag::input-bytes[]
  970. The number of bytes of input data posted to the {anomaly-job}.
  971. end::input-bytes[]
  972. tag::input-field-count[]
  973. The total number of fields in input documents posted to the {anomaly-job}. This
  974. count includes fields that are not used in the analysis. However, be aware that
  975. if you are using a {dfeed}, it extracts only the required fields from the
  976. documents it retrieves before posting them to the job.
  977. end::input-field-count[]
  978. tag::input-record-count[]
  979. The number of input documents posted to the {anomaly-job}.
  980. end::input-record-count[]
  981. tag::invalid-date-count[]
  982. The number of input documents with either a missing date field or a date that
  983. could not be parsed.
  984. end::invalid-date-count[]
  985. tag::is-interim[]
  986. If `true`, this is an interim result. In other words, the results are calculated
  987. based on partial input data.
  988. end::is-interim[]
  989. tag::job-id-anomaly-detection[]
  990. Identifier for the {anomaly-job}.
  991. end::job-id-anomaly-detection[]
  992. tag::job-id-data-frame-analytics[]
  993. Identifier for the {dfanalytics-job}.
  994. end::job-id-data-frame-analytics[]
  995. tag::job-id-anomaly-detection-default[]
  996. Identifier for the {anomaly-job}. It can be a job identifier, a group name, or a
  997. wildcard expression. If you do not specify one of these options, the API returns
  998. information for all {anomaly-jobs}.
  999. end::job-id-anomaly-detection-default[]
  1000. tag::job-id-data-frame-analytics-default[]
  1001. Identifier for the {dfanalytics-job}. If you do not specify this option, the API
  1002. returns information for the first hundred {dfanalytics-jobs}.
  1003. end::job-id-data-frame-analytics-default[]
  1004. tag::job-id-anomaly-detection-list[]
  1005. An identifier for the {anomaly-jobs}. It can be a job
  1006. identifier, a group name, or a comma-separated list of jobs or groups.
  1007. end::job-id-anomaly-detection-list[]
  1008. tag::job-id-anomaly-detection-wildcard[]
  1009. Identifier for the {anomaly-job}. It can be a job identifier, a group name, or a
  1010. wildcard expression.
  1011. end::job-id-anomaly-detection-wildcard[]
  1012. tag::job-id-anomaly-detection-wildcard-list[]
  1013. Identifier for the {anomaly-job}. It can be a job identifier, a group name, a
  1014. comma-separated list of jobs or groups, or a wildcard expression.
  1015. end::job-id-anomaly-detection-wildcard-list[]
  1016. tag::job-id-anomaly-detection-define[]
  1017. Identifier for the {anomaly-job}. This identifier can contain lowercase
  1018. alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start
  1019. and end with alphanumeric characters.
  1020. end::job-id-anomaly-detection-define[]
  1021. tag::job-id-data-frame-analytics-define[]
  1022. Identifier for the {dfanalytics-job}. This identifier can contain lowercase
  1023. alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start
  1024. and end with alphanumeric characters.
  1025. end::job-id-data-frame-analytics-define[]
  1026. tag::job-id-datafeed[]
  1027. The unique identifier for the job to which the {dfeed} sends data.
  1028. end::job-id-datafeed[]
  1029. tag::lambda[]
  1030. Advanced configuration option. Regularization parameter to prevent overfitting
  1031. on the training data set. Multiplies an L2 regularisation term which applies to
  1032. leaf weights of the individual trees in the forest. The higher the value the
  1033. more training will attempt to keep leaf weights small. This makes the prediction
  1034. function smoother at the expense of potentially not being able to capture
  1035. relevant relationships between the features and the {depvar}. The smaller this
  1036. parameter the larger individual trees will be and the longer training will take.
  1037. end::lambda[]
  1038. tag::last-data-time[]
  1039. The timestamp at which data was last analyzed, according to server time.
  1040. end::last-data-time[]
  1041. tag::latency[]
  1042. The size of the window in which to expect data that is out of time order. The
  1043. default value is 0 (no latency). If you specify a non-zero value, it must be
  1044. greater than or equal to one second. For more information about time units, see
  1045. <<time-units>>.
  1046. +
  1047. --
  1048. NOTE: Latency is only applicable when you send data by using
  1049. the <<ml-post-data,post data>> API.
  1050. --
  1051. end::latency[]
  1052. tag::latest-empty-bucket-timestamp[]
  1053. The timestamp of the last bucket that did not contain any data.
  1054. end::latest-empty-bucket-timestamp[]
  1055. tag::latest-record-timestamp[]
  1056. The timestamp of the latest chronologically input document.
  1057. end::latest-record-timestamp[]
  1058. tag::latest-sparse-record-timestamp[]
  1059. The timestamp of the last bucket that was considered sparse.
  1060. end::latest-sparse-record-timestamp[]
  1061. tag::max-empty-searches[]
  1062. If a real-time {dfeed} has never seen any data (including during any initial
  1063. training period) then it will automatically stop itself and close its associated
  1064. job after this many real-time searches that return no documents. In other words,
  1065. it will stop after `frequency` times `max_empty_searches` of real-time
  1066. operation. If not set then a {dfeed} with no end time that sees no data will
  1067. remain started until it is explicitly stopped. By default this setting is not
  1068. set.
  1069. end::max-empty-searches[]
  1070. tag::max-trees[]
  1071. Advanced configuration option. Defines the maximum number of trees the forest is
  1072. allowed to contain. The maximum value is 2000.
  1073. end::max-trees[]
  1074. tag::missing-field-count[]
  1075. The number of input documents that are missing a field that the {anomaly-job} is
  1076. configured to analyze. Input documents with missing fields are still processed
  1077. because it is possible that not all fields are missing.
  1078. +
  1079. --
  1080. NOTE: If you are using {dfeeds} or posting data to the job in JSON format, a
  1081. high `missing_field_count` is often not an indication of data issues. It is not
  1082. necessarily a cause for concern.
  1083. --
  1084. end::missing-field-count[]
  1085. tag::mode[]
  1086. There are three available modes:
  1087. +
  1088. --
  1089. * `auto`: The chunk size is dynamically calculated. This is the default and
  1090. recommended value.
  1091. * `manual`: Chunking is applied according to the specified `time_span`.
  1092. * `off`: No chunking is applied.
  1093. --
  1094. end::mode[]
  1095. tag::model-bytes[]
  1096. The number of bytes of memory used by the models. This is the maximum value
  1097. since the last time the model was persisted. If the job is closed, this value
  1098. indicates the latest size.
  1099. end::model-bytes[]
  1100. tag::model-bytes-exceeded[]
  1101. The number of bytes over the high limit for memory usage at the last allocation
  1102. failure.
  1103. end::model-bytes-exceeded[]
  1104. tag::model-id[]
  1105. The unique identifier of the trained {infer} model.
  1106. end::model-id[]
  1107. tag::model-memory-limit[]
  1108. The approximate maximum amount of memory resources that are required for
  1109. analytical processing. Once this limit is approached, data pruning becomes
  1110. more aggressive. Upon exceeding this limit, new entities are not modeled. The
  1111. default value for jobs created in version 6.1 and later is `1024mb`.
  1112. This value will need to be increased for jobs that are expected to analyze high
  1113. cardinality fields, but the default is set to a relatively small size to ensure
  1114. that high resource usage is a conscious decision. The default value for jobs
  1115. created in versions earlier than 6.1 is `4096mb`.
  1116. +
  1117. If you specify a number instead of a string, the units are assumed to be MiB.
  1118. Specifying a string is recommended for clarity. If you specify a byte size unit
  1119. of `b` or `kb` and the number does not equate to a discrete number of megabytes,
  1120. it is rounded down to the closest MiB. The minimum valid value is 1 MiB. If you
  1121. specify a value less than 1 MiB, an error occurs. For more information about
  1122. supported byte size units, see <<byte-units>>.
  1123. +
  1124. If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit`
  1125. setting, an error occurs when you try to create jobs that have
  1126. `model_memory_limit` values greater than that setting. For more information,
  1127. see <<ml-settings>>.
  1128. end::model-memory-limit[]
  1129. tag::model-memory-limit-anomaly-jobs[]
  1130. The upper limit for model memory usage, checked on increasing values.
  1131. end::model-memory-limit-anomaly-jobs[]
  1132. tag::model-memory-status[]
  1133. The status of the mathematical models, which can have one of the following
  1134. values:
  1135. +
  1136. --
  1137. * `ok`: The models stayed below the configured value.
  1138. * `soft_limit`: The models used more than 60% of the configured memory limit
  1139. and older unused models will be pruned to free up space.
  1140. * `hard_limit`: The models used more space than the configured memory limit.
  1141. As a result, not all incoming data was processed.
  1142. --
  1143. end::model-memory-status[]
  1144. tag::model-plot-config[]
  1145. This advanced configuration option stores model information along with the
  1146. results. It provides a more detailed view into {anomaly-detect}.
  1147. +
  1148. --
  1149. WARNING: If you enable model plot it can add considerable overhead to the
  1150. performance of the system; it is not feasible for jobs with many entities.
  1151. Model plot provides a simplified and indicative view of the model and its
  1152. bounds. It does not display complex features such as multivariate correlations
  1153. or multimodal data. As such, anomalies may occasionally be reported which cannot
  1154. be seen in the model plot.
  1155. Model plot config can be configured when the job is created or updated later. It
  1156. must be disabled if performance issues are experienced.
  1157. --
  1158. end::model-plot-config[]
  1159. tag::model-plot-config-enabled[]
  1160. If true, enables calculation and storage of the model bounds for each entity
  1161. that is being analyzed. By default, this is not enabled.
  1162. end::model-plot-config-enabled[]
  1163. tag::model-plot-config-terms[]
  1164. Limits data collection to this comma separated list of partition or by field
  1165. values. If terms are not specified or it is an empty string, no filtering is
  1166. applied. For example, "CPU,NetworkIn,DiskWrites". Wildcards are not supported.
  1167. Only the specified `terms` can be viewed when using the Single Metric Viewer.
  1168. end::model-plot-config-terms[]
  1169. tag::model-snapshot-id[]
  1170. A numerical character string that uniquely identifies the model snapshot. For
  1171. example, `1575402236000 `.
  1172. end::model-snapshot-id[]
  1173. tag::model-snapshot-retention-days[]
  1174. Advanced configuration option. The period of time (in days) that model snapshots
  1175. are retained. Age is calculated relative to the timestamp of the newest model
  1176. snapshot. The default value is `1`, which means snapshots that are one day
  1177. (twenty-four hours) older than the newest snapshot are deleted.
  1178. end::model-snapshot-retention-days[]
  1179. tag::model-timestamp[]
  1180. The timestamp of the last record when the model stats were gathered.
  1181. end::model-timestamp[]
  1182. tag::multivariate-by-fields[]
  1183. This functionality is reserved for internal use. It is not supported for use in
  1184. customer environments and is not subject to the support SLA of official GA
  1185. features.
  1186. +
  1187. --
  1188. If set to `true`, the analysis will automatically find correlations between
  1189. metrics for a given `by` field value and report anomalies when those
  1190. correlations cease to hold. For example, suppose CPU and memory usage on host A
  1191. is usually highly correlated with the same metrics on host B. Perhaps this
  1192. correlation occurs because they are running a load-balanced application.
  1193. If you enable this property, then anomalies will be reported when, for example,
  1194. CPU usage on host A is high and the value of CPU usage on host B is low. That
  1195. is to say, you'll see an anomaly when the CPU of host A is unusual given
  1196. the CPU of host B.
  1197. NOTE: To use the `multivariate_by_fields` property, you must also specify
  1198. `by_field_name` in your detector.
  1199. --
  1200. end::multivariate-by-fields[]
  1201. tag::node-address[]
  1202. The network address of the node.
  1203. end::node-address[]
  1204. tag::node-datafeeds[]
  1205. For started {dfeeds} only, this information pertains to the node upon which the
  1206. {dfeed} is started.
  1207. end::node-datafeeds[]
  1208. tag::node-ephemeral-id[]
  1209. The ephemeral ID of the node.
  1210. end::node-ephemeral-id[]
  1211. tag::node-id[]
  1212. The unique identifier of the node.
  1213. end::node-id[]
  1214. tag::node-jobs[]
  1215. Contains properties for the node that runs the job. This information is
  1216. available only for open jobs.
  1217. end::node-jobs[]
  1218. tag::open-time[]
  1219. For open jobs only, the elapsed time for which the job has been open.
  1220. end::open-time[]
  1221. tag::out-of-order-timestamp-count[]
  1222. The number of input documents that are out of time sequence and outside
  1223. of the latency window. This information is applicable only when you provide data
  1224. to the {anomaly-job} by using the <<ml-post-data,post data API>>. These out of
  1225. order documents are discarded, since jobs require time series data to be in
  1226. ascending chronological order.
  1227. end::out-of-order-timestamp-count[]
  1228. tag::over-field-name[]
  1229. The field used to split the data. In particular, this property is used for
  1230. analyzing the splits with respect to the history of all splits. It is used for
  1231. finding unusual values in the population of all splits. For more information,
  1232. see {ml-docs}/ml-configuring-pop.html[Performing population analysis].
  1233. end::over-field-name[]
  1234. tag::partition-field-name[]
  1235. The field used to segment the analysis. When you use this property, you have
  1236. completely independent baselines for each value of this field.
  1237. end::partition-field-name[]
  1238. tag::prediction-field-name[]
  1239. Defines the name of the prediction field in the results.
  1240. Defaults to `<dependent_variable>_prediction`.
  1241. end::prediction-field-name[]
  1242. tag::processed-field-count[]
  1243. The total number of fields in all the documents that have been processed by the
  1244. {anomaly-job}. Only fields that are specified in the detector configuration
  1245. object contribute to this count. The timestamp is not included in this count.
  1246. end::processed-field-count[]
  1247. tag::processed-record-count[]
  1248. The number of input documents that have been processed by the {anomaly-job}.
  1249. This value includes documents with missing fields, since they are nonetheless
  1250. analyzed. If you use {dfeeds} and have aggregations in your search query, the
  1251. `processed_record_count` is the number of aggregation results processed, not the
  1252. number of {es} documents.
  1253. end::processed-record-count[]
  1254. tag::randomize-seed[]
  1255. Defines the seed to the random generator that is used to pick which documents
  1256. will be used for training. By default it is randomly generated. Set it to a
  1257. specific value to ensure the same documents are used for training assuming other
  1258. related parameters (for example, `source`, `analyzed_fields`, etc.) are the
  1259. same.
  1260. end::randomize-seed[]
  1261. tag::query[]
  1262. The {es} query domain-specific language (DSL). This value corresponds to the
  1263. query object in an {es} search POST body. All the options that are supported by
  1264. {es} can be used, as this object is passed verbatim to {es}. By default, this
  1265. property has the following value: `{"match_all": {"boost": 1}}`.
  1266. end::query[]
  1267. tag::query-delay[]
  1268. The number of seconds behind real time that data is queried. For example, if
  1269. data from 10:04 a.m. might not be searchable in {es} until 10:06 a.m., set this
  1270. property to 120 seconds. The default value is randomly selected between `60s`
  1271. and `120s`. This randomness improves the query performance when there are
  1272. multiple jobs running on the same node. For more information, see
  1273. {ml-docs}/ml-delayed-data-detection.html[Handling delayed data].
  1274. end::query-delay[]
  1275. tag::rare-category-count[]
  1276. The number of categories that match just one categorized document.
  1277. end::rare-category-count[]
  1278. tag::renormalization-window-days[]
  1279. Advanced configuration option. The period over which adjustments to the score
  1280. are applied, as new data is seen. The default value is the longer of 30 days or
  1281. 100 `bucket_spans`.
  1282. end::renormalization-window-days[]
  1283. tag::results-index-name[]
  1284. A text string that affects the name of the {ml} results index. The default value
  1285. is `shared`, which generates an index named `.ml-anomalies-shared`.
  1286. end::results-index-name[]
  1287. tag::results-retention-days[]
  1288. Advanced configuration option. The period of time (in days) that results are
  1289. retained. Age is calculated relative to the timestamp of the latest bucket
  1290. result. If this property has a non-null value, once per day at 00:30 (server
  1291. time), results that are the specified number of days older than the latest
  1292. bucket result are deleted from {es}. The default value is null, which means all
  1293. results are retained.
  1294. end::results-retention-days[]
  1295. tag::retain[]
  1296. If `true`, this snapshot will not be deleted during automatic cleanup of
  1297. snapshots older than `model_snapshot_retention_days`. However, this snapshot
  1298. will be deleted when the job is deleted. The default value is `false`.
  1299. end::retain[]
  1300. tag::script-fields[]
  1301. Specifies scripts that evaluate custom expressions and returns script fields to
  1302. the {dfeed}. The detector configuration objects in a job can contain functions
  1303. that use these script fields. For more information, see
  1304. {ml-docs}/ml-configuring-transform.html[Transforming data with script fields]
  1305. and <<request-body-search-script-fields,Script fields>>.
  1306. end::script-fields[]
  1307. tag::scroll-size[]
  1308. The `size` parameter that is used in {es} searches. The default value is `1000`.
  1309. end::scroll-size[]
  1310. tag::search-bucket-avg[]
  1311. The average search time per bucket, in milliseconds.
  1312. end::search-bucket-avg[]
  1313. tag::search-count[]
  1314. The number of searches run by the {dfeed}.
  1315. end::search-count[]
  1316. tag::search-exp-avg-hour[]
  1317. The exponential average search time per hour, in milliseconds.
  1318. end::search-exp-avg-hour[]
  1319. tag::search-time[]
  1320. The total time the {dfeed} spent searching, in milliseconds.
  1321. end::search-time[]
  1322. tag::size[]
  1323. Specifies the maximum number of {dfanalytics-jobs} to obtain. The default value
  1324. is `100`.
  1325. end::size[]
  1326. tag::snapshot-id[]
  1327. Identifier for the model snapshot.
  1328. end::snapshot-id[]
  1329. tag::sparse-bucket-count[]
  1330. The number of buckets that contained few data points compared to the expected
  1331. number of data points. If your data contains many sparse buckets, consider using
  1332. a longer `bucket_span`.
  1333. end::sparse-bucket-count[]
  1334. tag::state-anomaly-job[]
  1335. The status of the {anomaly-job}, which can be one of the following values:
  1336. +
  1337. --
  1338. * `closed`: The job finished successfully with its model state persisted. The
  1339. job must be opened before it can accept further data.
  1340. * `closing`: The job close action is in progress and has not yet completed. A
  1341. closing job cannot accept further data.
  1342. * `failed`: The job did not finish successfully due to an error. This situation
  1343. can occur due to invalid input data, a fatal error occurring during the
  1344. analysis, or an external interaction such as the process being killed by the
  1345. Linux out of memory (OOM) killer. If the job had irrevocably failed, it must be
  1346. force closed and then deleted. If the {dfeed} can be corrected, the job can be
  1347. closed and then re-opened.
  1348. * `opened`: The job is available to receive and process data.
  1349. * `opening`: The job open action is in progress and has not yet completed.
  1350. --
  1351. end::state-anomaly-job[]
  1352. tag::state-datafeed[]
  1353. The status of the {dfeed}, which can be one of the following values:
  1354. +
  1355. --
  1356. * `starting`: The {dfeed} has been requested to start but has not yet started.
  1357. * `started`: The {dfeed} is actively receiving data.
  1358. * `stopping`: The {dfeed} has been requested to stop gracefully and is
  1359. completing its final action.
  1360. * `stopped`: The {dfeed} is stopped and will not receive data until it is
  1361. re-started.
  1362. --
  1363. end::state-datafeed[]
  1364. tag::summary-count-field-name[]
  1365. If this property is specified, the data that is fed to the job is expected to be
  1366. pre-summarized. This property value is the name of the field that contains the
  1367. count of raw data points that have been summarized. The same
  1368. `summary_count_field_name` applies to all detectors in the job.
  1369. +
  1370. --
  1371. NOTE: The `summary_count_field_name` property cannot be used with the `metric`
  1372. function.
  1373. --
  1374. end::summary-count-field-name[]
  1375. tag::tags[]
  1376. A comma delimited string of tags. A {infer} model can have many tags, or none.
  1377. When supplied, only {infer} models that contain all the supplied tags are
  1378. returned.
  1379. end::tags[]
  1380. tag::timeout-start[]
  1381. Controls the amount of time to wait until the {dfanalytics-job} starts. Defaults
  1382. to 20 seconds.
  1383. end::timeout-start[]
  1384. tag::timeout-stop[]
  1385. Controls the amount of time to wait until the {dfanalytics-job} stops. Defaults
  1386. to 20 seconds.
  1387. end::timeout-stop[]
  1388. tag::time-format[]
  1389. The time format, which can be `epoch`, `epoch_ms`, or a custom pattern. The
  1390. default value is `epoch`, which refers to UNIX or Epoch time (the number of
  1391. seconds since 1 Jan 1970). The value `epoch_ms` indicates that time is measured
  1392. in milliseconds since the epoch. The `epoch` and `epoch_ms` time formats accept
  1393. either integer or real values. +
  1394. +
  1395. NOTE: Custom patterns must conform to the Java `DateTimeFormatter` class.
  1396. When you use date-time formatting patterns, it is recommended that you provide
  1397. the full date, time and time zone. For example: `yyyy-MM-dd'T'HH:mm:ssX`.
  1398. If the pattern that you specify is not sufficient to produce a complete
  1399. timestamp, job creation fails.
  1400. end::time-format[]
  1401. tag::time-span[]
  1402. The time span that each search will be querying. This setting is only applicable
  1403. when the mode is set to `manual`. For example: `3h`.
  1404. end::time-span[]
  1405. tag::timestamp-results[]
  1406. The start time of the bucket for which these results were calculated.
  1407. end::timestamp-results[]
  1408. tag::tokenizer[]
  1409. The name or definition of the <<analysis-tokenizers,tokenizer>> to use after
  1410. character filters are applied. This property is compulsory if
  1411. `categorization_analyzer` is specified as an object. Machine learning provides a
  1412. tokenizer called `ml_classic` that tokenizes in the same way as the
  1413. non-customizable tokenizer in older versions of the product. If you want to use
  1414. that tokenizer but change the character or token filters, specify
  1415. `"tokenizer": "ml_classic"` in your `categorization_analyzer`.
  1416. end::tokenizer[]
  1417. tag::total-by-field-count[]
  1418. The number of `by` field values that were analyzed by the models. This value is
  1419. cumulative for all detectors in the job.
  1420. end::total-by-field-count[]
  1421. tag::total-category-count[]
  1422. The number of categories created by categorization.
  1423. end::total-category-count[]
  1424. tag::total-over-field-count[]
  1425. The number of `over` field values that were analyzed by the models. This value
  1426. is cumulative for all detectors in the job.
  1427. end::total-over-field-count[]
  1428. tag::total-partition-field-count[]
  1429. The number of `partition` field values that were analyzed by the models. This
  1430. value is cumulative for all detectors in the job.
  1431. end::total-partition-field-count[]
  1432. tag::training-percent[]
  1433. Defines what percentage of the eligible documents that will
  1434. be used for training. Documents that are ignored by the analysis (for example
  1435. those that contain arrays with more than one value) won’t be included in the
  1436. calculation for used percentage. Defaults to `100`.
  1437. end::training-percent[]
  1438. tag::use-null[]
  1439. Defines whether a new series is used as the null series when there is no value
  1440. for the by or partition fields. The default value is `false`.
  1441. end::use-null[]