| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953 | [role="xpack"][testenv="basic"][[find-structure]]= Find structure APIFinds the structure of text. The text mustcontain data that is suitable to be ingested into the{stack}.[discrete][[find-structure-request]]== {api-request-title}`POST _text_structure/find_structure`[discrete][[find-structure-prereqs]]== {api-prereq-title}* If the {es} {security-features} are enabled, you must have `monitor_text_structure` or`monitor` cluster privileges to use this API. See<<security-privileges>>.[discrete][[find-structure-desc]]== {api-description-title}This API provides a starting point for ingesting data into {es} in a format thatis suitable for subsequent use with other {stack} functionality.Unlike other {es} endpoints, the data that is posted to this endpoint does notneed to be UTF-8 encoded and in JSON format. It must, however, be text; binarytext formats are not currently supported.The response from the API contains:* A couple of messages from the beginning of the text.* Statistics that reveal the most common values for all fields detected withinthe text and basic numeric statistics for numeric fields.* Information about the structure of the text, which is useful when you writeingest configurations to index it or similarly formatted text.* Appropriate mappings for an {es} index, which you could use to ingest the text.All this information can be calculated by the structure finder with no guidance.However, you can optionally override some of the decisions about the textstructure by specifying one or more query parameters.Details of the output can be seen in the <<find-structure-examples,examples>>.If the structure finder produces unexpected results for some text,specify the `explain` query parameter. It causes an `explanation` to appear inthe response, which should help in determining why the returned structure waschosen.[discrete][[find-structure-query-parms]]== {api-query-parms-title}`charset`::(Optional, string) The text's character set. It must be a character set that issupported by the JVM that {es} uses. For example, `UTF-8`, `UTF-16LE`,`windows-1252`, or `EUC-JP`. If this parameter is not specified, the structurefinder chooses an appropriate character set.`column_names`::(Optional, string) If you have set `format` to `delimited`, you can specify thecolumn names in a comma-separated list. If this parameter is not specified, thestructure finder uses the column names from the header row of the text. If thetext does not have a header role, columns are named "column1", "column2","column3", etc.`delimiter`::(Optional, string) If you have set `format` to `delimited`, you can specify thecharacter used to delimit the values in each row. Only a single character issupported; the delimiter cannot have multiple characters. By default, the APIconsiders the following possibilities: comma, tab, semi-colon, and pipe (`|`).In this default scenario, all rows must have the same number of fields for thedelimited format to be detected. If you specify a delimiter, up to 10% of therows can have a different number of columns than the first row.`explain`::(Optional, Boolean) If this parameter is set to `true`, the response includes afield named `explanation`, which is an array of strings that indicate how thestructure finder produced its result. The default value is `false`.`format`::(Optional, string) The high level structure of the text. Valid values are`ndjson`, `xml`, `delimited`, and `semi_structured_text`. By default, the APIchooses the format. In this default scenario, all rows must have the same numberof fields for a delimited format to be detected. If the `format` is set to`delimited` and the `delimiter` is not set, however, the API tolerates up to 5%of rows that have a different number of columns than the first row.`grok_pattern`::(Optional, string) If you have set `format` to `semi_structured_text`, you canspecify a Grok pattern that is used to extract fields from every message in thetext. The name of the timestamp field in the Grok pattern must match what isspecified in the `timestamp_field` parameter. If that parameter is notspecified, the name of the timestamp field in the Grok pattern must match"timestamp". If `grok_pattern` is not specified, the structure finder creates aGrok pattern.`has_header_row`::(Optional, Boolean) If you have set `format` to `delimited`, you can use thisparameter to indicate whether the column names are in the first row of the text.If this parameter is not specified, the structure finder guesses based on thesimilarity of the first row of the text to other rows.`line_merge_size_limit`::(Optional, unsigned integer) The maximum number of characters in a message whenlines are merged to form messages while analyzing semi-structured text. Thedefault is `10000`. If you have extremely long messages you may need to increasethis, but be aware that this may lead to very long processing times if the wayto group lines into messages is misdetected.`lines_to_sample`::(Optional, unsigned integer) The number of lines to include in the structuralanalysis, starting from the beginning of the text. The minimum is 2; the defaultis `1000`. If the value of this parameter is greater than the number of lines inthe text, the analysis proceeds (as long as there are at least two lines in thetext) for all of the lines.+--NOTE: The number of lines and the variation of the lines affects the speed ofthe analysis. For example, if you upload text where the first 1000 linesare all variations on the same message, the analysis will find more commonalitythan would be seen with a bigger sample. If possible, however, it is moreefficient to upload sample text with more variety in the first 1000 lines thanto request analysis of 100000 lines to achieve some variety.--`quote`::(Optional, string) If you have set `format` to `delimited`, you can specify thecharacter used to quote the values in each row if they contain newlines or thedelimiter character. Only a single character is supported. If this parameter isnot specified, the default value is a double quote (`"`). If your delimited textformat does not use quoting, a workaround is to set this argument to a characterthat does not appear anywhere in the sample.`should_trim_fields`::(Optional, Boolean) If you have set `format` to `delimited`, you can specifywhether values between delimiters should have whitespace trimmed from them. Ifthis parameter is not specified and the delimiter is pipe (`|`), the defaultvalue is `true`. Otherwise, the default value is `false`.`timeout`::(Optional, <<time-units,time units>>) Sets the maximum amount of time that thestructure analysis make take. If the analysis is still running when the timeoutexpires then it will be aborted. The default value is 25 seconds.`timestamp_field`::(Optional, string) The name of the field that contains the primary timestamp ofeach record in the text. In particular, if the text were ingested into an index,this is the field that would be used to populate the `@timestamp` field.+--If the `format` is `semi_structured_text`, this field must match the name of theappropriate extraction in the `grok_pattern`. Therefore, for semi-structuredtext, it is best not to specify this parameter unless `grok_pattern` isalso specified.For structured text, if you specify this parameter, the field must existwithin the text.If this parameter is not specified, the structure finder makes a decision aboutwhich field (if any) is the primary timestamp field. For structured text,it is not compulsory to have a timestamp in the text.--`timestamp_format`::(Optional, string) The Java time format of the timestamp field in the text.+--Only a subset of Java time format letter groups are supported:* `a`* `d`* `dd`* `EEE`* `EEEE`* `H`* `HH`* `h`* `M`* `MM`* `MMM`* `MMMM`* `mm`* `ss`* `XX`* `XXX`* `yy`* `yyyy`* `zzz`Additionally `S` letter groups (fractional seconds) of length one to nine aresupported providing they occur after `ss` and separated from the `ss` by a `.`,`,` or `:`. Spacing and punctuation is also permitted with the exception of `?`,newline and carriage return, together with literal text enclosed in singlequotes. For example, `MM/dd HH.mm.ss,SSSSSS 'in' yyyy` is a valid overrideformat.One valuable use case for this parameter is when the format is semi-structuredtext, there are multiple timestamp formats in the text, and you know whichformat corresponds to the primary timestamp, but you do not want to specify thefull `grok_pattern`. Another is when the timestamp format is one that thestructure finder does not consider by default.If this parameter is not specified, the structure finder chooses the bestformat from a built-in set.The following table provides the appropriate `timeformat` values for some example timestamps:|===| Timeformat                 | Presentation| yyyy-MM-dd HH:mm:ssZ       | 2019-04-20 13:15:22+0000| EEE, d MMM yyyy HH:mm:ss Z | Sat, 20 Apr 2019 13:15:22 +0000| dd.MM.yy HH:mm:ss.SSS      | 20.04.19 13:15:22.285|===Seehttps://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html[the Java date/time format documentation]for more information about date and time format syntax.--[discrete][[find-structure-request-body]]== {api-request-body-title}The text that you want to analyze. It must contain data that is suitable tobe ingested into {es}. It does not need to be in JSON format and it does notneed to be UTF-8 encoded. The size is limited to the {es} HTTP receive buffersize, which defaults to 100 Mb.[discrete][[find-structure-examples]]== {api-examples-title}[discrete][[find-structure-example-nld-json]]=== Ingesting newline-delimited JSONSuppose you have newline-delimited JSON text that contains information aboutsome books. You can send the contents to the `find_structure` endpoint:[source,console]----POST _text_structure/find_structure{"name": "Leviathan Wakes", "author": "James S.A. Corey", "release_date": "2011-06-02", "page_count": 561}{"name": "Hyperion", "author": "Dan Simmons", "release_date": "1989-05-26", "page_count": 482}{"name": "Dune", "author": "Frank Herbert", "release_date": "1965-06-01", "page_count": 604}{"name": "Dune Messiah", "author": "Frank Herbert", "release_date": "1969-10-15", "page_count": 331}{"name": "Children of Dune", "author": "Frank Herbert", "release_date": "1976-04-21", "page_count": 408}{"name": "God Emperor of Dune", "author": "Frank Herbert", "release_date": "1981-05-28", "page_count": 454}{"name": "Consider Phlebas", "author": "Iain M. Banks", "release_date": "1987-04-23", "page_count": 471}{"name": "Pandora's Star", "author": "Peter F. Hamilton", "release_date": "2004-03-02", "page_count": 768}{"name": "Revelation Space", "author": "Alastair Reynolds", "release_date": "2000-03-15", "page_count": 585}{"name": "A Fire Upon the Deep", "author": "Vernor Vinge", "release_date": "1992-06-01", "page_count": 613}{"name": "Ender's Game", "author": "Orson Scott Card", "release_date": "1985-06-01", "page_count": 324}{"name": "1984", "author": "George Orwell", "release_date": "1985-06-01", "page_count": 328}{"name": "Fahrenheit 451", "author": "Ray Bradbury", "release_date": "1953-10-15", "page_count": 227}{"name": "Brave New World", "author": "Aldous Huxley", "release_date": "1932-06-01", "page_count": 268}{"name": "Foundation", "author": "Isaac Asimov", "release_date": "1951-06-01", "page_count": 224}{"name": "The Giver", "author": "Lois Lowry", "release_date": "1993-04-26", "page_count": 208}{"name": "Slaughterhouse-Five", "author": "Kurt Vonnegut", "release_date": "1969-06-01", "page_count": 275}{"name": "The Hitchhiker's Guide to the Galaxy", "author": "Douglas Adams", "release_date": "1979-10-12", "page_count": 180}{"name": "Snow Crash", "author": "Neal Stephenson", "release_date": "1992-06-01", "page_count": 470}{"name": "Neuromancer", "author": "William Gibson", "release_date": "1984-07-01", "page_count": 271}{"name": "The Handmaid's Tale", "author": "Margaret Atwood", "release_date": "1985-06-01", "page_count": 311}{"name": "Starship Troopers", "author": "Robert A. Heinlein", "release_date": "1959-12-01", "page_count": 335}{"name": "The Left Hand of Darkness", "author": "Ursula K. Le Guin", "release_date": "1969-06-01", "page_count": 304}{"name": "The Moon is a Harsh Mistress", "author": "Robert A. Heinlein", "release_date": "1966-04-01", "page_count": 288}----// TESTIf the request does not encounter errors, you receive the following result:[source,console-result]----{  "num_lines_analyzed" : 24, <1>  "num_messages_analyzed" : 24, <2>  "sample_start" : "{\"name\": \"Leviathan Wakes\", \"author\": \"James S.A. Corey\", \"release_date\": \"2011-06-02\", \"page_count\": 561}\n{\"name\": \"Hyperion\", \"author\": \"Dan Simmons\", \"release_date\": \"1989-05-26\", \"page_count\": 482}\n", <3>  "charset" : "UTF-8", <4>  "has_byte_order_marker" : false, <5>  "format" : "ndjson", <6>  "timestamp_field" : "release_date", <7>  "joda_timestamp_formats" : [ <8>    "ISO8601"  ],  "java_timestamp_formats" : [ <9>    "ISO8601"  ],  "need_client_timezone" : true, <10>  "mappings" : { <11>    "properties" : {      "@timestamp" : {        "type" : "date"      },      "author" : {        "type" : "keyword"      },      "name" : {        "type" : "keyword"      },      "page_count" : {        "type" : "long"      },      "release_date" : {        "type" : "date",        "format" : "iso8601"      }    }  },  "ingest_pipeline" : {    "description" : "Ingest pipeline created by text structure finder",    "processors" : [      {        "date" : {          "field" : "release_date",          "timezone" : "{{ event.timezone }}",          "formats" : [            "ISO8601"          ]        }      }    ]  },  "field_stats" : { <12>    "author" : {      "count" : 24,      "cardinality" : 20,      "top_hits" : [        {          "value" : "Frank Herbert",          "count" : 4        },        {          "value" : "Robert A. Heinlein",          "count" : 2        },        {          "value" : "Alastair Reynolds",          "count" : 1        },        {          "value" : "Aldous Huxley",          "count" : 1        },        {          "value" : "Dan Simmons",          "count" : 1        },        {          "value" : "Douglas Adams",          "count" : 1        },        {          "value" : "George Orwell",          "count" : 1        },        {          "value" : "Iain M. Banks",          "count" : 1        },        {          "value" : "Isaac Asimov",          "count" : 1        },        {          "value" : "James S.A. Corey",          "count" : 1        }      ]    },    "name" : {      "count" : 24,      "cardinality" : 24,      "top_hits" : [        {          "value" : "1984",          "count" : 1        },        {          "value" : "A Fire Upon the Deep",          "count" : 1        },        {          "value" : "Brave New World",          "count" : 1        },        {          "value" : "Children of Dune",          "count" : 1        },        {          "value" : "Consider Phlebas",          "count" : 1        },        {          "value" : "Dune",          "count" : 1        },        {          "value" : "Dune Messiah",          "count" : 1        },        {          "value" : "Ender's Game",          "count" : 1        },        {          "value" : "Fahrenheit 451",          "count" : 1        },        {          "value" : "Foundation",          "count" : 1        }      ]    },    "page_count" : {      "count" : 24,      "cardinality" : 24,      "min_value" : 180,      "max_value" : 768,      "mean_value" : 387.0833333333333,      "median_value" : 329.5,      "top_hits" : [        {          "value" : 180,          "count" : 1        },        {          "value" : 208,          "count" : 1        },        {          "value" : 224,          "count" : 1        },        {          "value" : 227,          "count" : 1        },        {          "value" : 268,          "count" : 1        },        {          "value" : 271,          "count" : 1        },        {          "value" : 275,          "count" : 1        },        {          "value" : 288,          "count" : 1        },        {          "value" : 304,          "count" : 1        },        {          "value" : 311,          "count" : 1        }      ]    },    "release_date" : {      "count" : 24,      "cardinality" : 20,      "earliest" : "1932-06-01",      "latest" : "2011-06-02",      "top_hits" : [        {          "value" : "1985-06-01",          "count" : 3        },        {          "value" : "1969-06-01",          "count" : 2        },        {          "value" : "1992-06-01",          "count" : 2        },        {          "value" : "1932-06-01",          "count" : 1        },        {          "value" : "1951-06-01",          "count" : 1        },        {          "value" : "1953-10-15",          "count" : 1        },        {          "value" : "1959-12-01",          "count" : 1        },        {          "value" : "1965-06-01",          "count" : 1        },        {          "value" : "1966-04-01",          "count" : 1        },        {          "value" : "1969-10-15",          "count" : 1        }      ]    }  }}----// TESTRESPONSE[s/"sample_start" : ".*",/"sample_start" : "$body.sample_start",/]// The substitution is because the text is pre-processed by the test harness,// so the fields may get reordered in the JSON the endpoint sees<1> `num_lines_analyzed` indicates how many lines of the text were analyzed.<2> `num_messages_analyzed` indicates how many distinct messages the linescontained. For NDJSON, this value is the same as `num_lines_analyzed`. For othertext formats, messages can span several lines.<3> `sample_start` reproduces the first two messages in the text verbatim. Thismay help diagnose parse errors or accidental uploads of the wrong text.<4> `charset` indicates the character encoding used to parse the text.<5> For UTF character encodings, `has_byte_order_marker` indicates whether thetext begins with a byte order marker.<6> `format` is one of `ndjson`, `xml`, `delimited` or `semi_structured_text`.<7> The `timestamp_field` names the field considered most likely to be theprimary timestamp of each document.<8> `joda_timestamp_formats` are used to tell {ls} how to parse timestamps.<9> `java_timestamp_formats` are the Java time formats recognized in the timefields. {es} mappings and ingest pipelines use this format.<10> If a timestamp format is detected that does not include a timezone,`need_client_timezone` will be `true`. The server that parses the text musttherefore be told the correct timezone by the client.<11> `mappings` contains some suitable mappings for an index into which the datacould be ingested. In this case, the `release_date` field has been given a`keyword` type as it is not considered specific enough to convert to the `date`type.<12> `field_stats` contains the most common values of each field, plus basicnumeric statistics for the numeric `page_count` field. This information mayprovide clues that the data needs to be cleaned or transformed prior to use byother {stack} functionality.[discrete][[find-structure-example-nyc]]=== Finding the structure of NYC yellow cab example dataThe next example shows how it's possible to find the structure of some New YorkCity yellow cab trip data. The first `curl` command downloads the data, thefirst 20000 lines of which are then piped into the `find_structure`endpoint. The `lines_to_sample` query parameter of the endpoint is set to 20000to match what is specified in the `head` command.[source,js]----curl -s "s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2018-06.csv" | head -20000 | curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty&lines_to_sample=20000" -T -----// NOTCONSOLE// Not converting to console because this shows how curl can be used--NOTE: The `Content-Type: application/json` header must be set even though inthis case the data is not JSON. (Alternatively the `Content-Type` can be setto any other supported by {es}, but it must be set.)--If the request does not encounter errors, you receive the following result:[source,js]----{  "num_lines_analyzed" : 20000,  "num_messages_analyzed" : 19998, <1>  "sample_start" : "VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodeID,store_and_fwd_flag,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_surcharge,total_amount\n\n1,2018-06-01 00:15:40,2018-06-01 00:16:46,1,.00,1,N,145,145,2,3,0.5,0.5,0,0,0.3,4.3\n",  "charset" : "UTF-8",  "has_byte_order_marker" : false,  "format" : "delimited", <2>  "multiline_start_pattern" : "^.*?,\"?\\d{4}-\\d{2}-\\d{2}[T ]\\d{2}:\\d{2}",  "exclude_lines_pattern" : "^\"?VendorID\"?,\"?tpep_pickup_datetime\"?,\"?tpep_dropoff_datetime\"?,\"?passenger_count\"?,\"?trip_distance\"?,\"?RatecodeID\"?,\"?store_and_fwd_flag\"?,\"?PULocationID\"?,\"?DOLocationID\"?,\"?payment_type\"?,\"?fare_amount\"?,\"?extra\"?,\"?mta_tax\"?,\"?tip_amount\"?,\"?tolls_amount\"?,\"?improvement_surcharge\"?,\"?total_amount\"?",  "column_names" : [ <3>    "VendorID",    "tpep_pickup_datetime",    "tpep_dropoff_datetime",    "passenger_count",    "trip_distance",    "RatecodeID",    "store_and_fwd_flag",    "PULocationID",    "DOLocationID",    "payment_type",    "fare_amount",    "extra",    "mta_tax",    "tip_amount",    "tolls_amount",    "improvement_surcharge",    "total_amount"  ],  "has_header_row" : true, <4>  "delimiter" : ",", <5>  "quote" : "\"", <6>  "timestamp_field" : "tpep_pickup_datetime", <7>  "joda_timestamp_formats" : [ <8>    "YYYY-MM-dd HH:mm:ss"  ],  "java_timestamp_formats" : [ <9>    "yyyy-MM-dd HH:mm:ss"  ],  "need_client_timezone" : true, <10>  "mappings" : {    "properties" : {      "@timestamp" : {        "type" : "date"      },      "DOLocationID" : {        "type" : "long"      },      "PULocationID" : {        "type" : "long"      },      "RatecodeID" : {        "type" : "long"      },      "VendorID" : {        "type" : "long"      },      "extra" : {        "type" : "double"      },      "fare_amount" : {        "type" : "double"      },      "improvement_surcharge" : {        "type" : "double"      },      "mta_tax" : {        "type" : "double"      },      "passenger_count" : {        "type" : "long"      },      "payment_type" : {        "type" : "long"      },      "store_and_fwd_flag" : {        "type" : "keyword"      },      "tip_amount" : {        "type" : "double"      },      "tolls_amount" : {        "type" : "double"      },      "total_amount" : {        "type" : "double"      },      "tpep_dropoff_datetime" : {        "type" : "date",        "format" : "yyyy-MM-dd HH:mm:ss"      },      "tpep_pickup_datetime" : {        "type" : "date",        "format" : "yyyy-MM-dd HH:mm:ss"      },      "trip_distance" : {        "type" : "double"      }    }  },  "ingest_pipeline" : {    "description" : "Ingest pipeline created by text structure finder",    "processors" : [      {        "csv" : {          "field" : "message",          "target_fields" : [            "VendorID",            "tpep_pickup_datetime",            "tpep_dropoff_datetime",            "passenger_count",            "trip_distance",            "RatecodeID",            "store_and_fwd_flag",            "PULocationID",            "DOLocationID",            "payment_type",            "fare_amount",            "extra",            "mta_tax",            "tip_amount",            "tolls_amount",            "improvement_surcharge",            "total_amount"          ]        }      },      {        "date" : {          "field" : "tpep_pickup_datetime",          "timezone" : "{{ event.timezone }}",          "formats" : [            "yyyy-MM-dd HH:mm:ss"          ]        }      },      {        "convert" : {          "field" : "DOLocationID",          "type" : "long"        }      },      {        "convert" : {          "field" : "PULocationID",          "type" : "long"        }      },      {        "convert" : {          "field" : "RatecodeID",          "type" : "long"        }      },      {        "convert" : {          "field" : "VendorID",          "type" : "long"        }      },      {        "convert" : {          "field" : "extra",          "type" : "double"        }      },      {        "convert" : {          "field" : "fare_amount",          "type" : "double"        }      },      {        "convert" : {          "field" : "improvement_surcharge",          "type" : "double"        }      },      {        "convert" : {          "field" : "mta_tax",          "type" : "double"        }      },      {        "convert" : {          "field" : "passenger_count",          "type" : "long"        }      },      {        "convert" : {          "field" : "payment_type",          "type" : "long"        }      },      {        "convert" : {          "field" : "tip_amount",          "type" : "double"        }      },      {        "convert" : {          "field" : "tolls_amount",          "type" : "double"        }      },      {        "convert" : {          "field" : "total_amount",          "type" : "double"        }      },      {        "convert" : {          "field" : "trip_distance",          "type" : "double"        }      },      {        "remove" : {          "field" : "message"        }      }    ]  },  "field_stats" : {    "DOLocationID" : {      "count" : 19998,      "cardinality" : 240,      "min_value" : 1,      "max_value" : 265,      "mean_value" : 150.26532653265312,      "median_value" : 148,      "top_hits" : [        {          "value" : 79,          "count" : 760        },        {          "value" : 48,          "count" : 683        },        {          "value" : 68,          "count" : 529        },        {          "value" : 170,          "count" : 506        },        {          "value" : 107,          "count" : 468        },        {          "value" : 249,          "count" : 457        },        {          "value" : 230,          "count" : 441        },        {          "value" : 186,          "count" : 432        },        {          "value" : 141,          "count" : 409        },        {          "value" : 263,          "count" : 386        }      ]    },    "PULocationID" : {      "count" : 19998,      "cardinality" : 154,      "min_value" : 1,      "max_value" : 265,      "mean_value" : 153.4042404240424,      "median_value" : 148,      "top_hits" : [        {          "value" : 79,          "count" : 1067        },        {          "value" : 230,          "count" : 949        },        {          "value" : 148,          "count" : 940        },        {          "value" : 132,          "count" : 897        },        {          "value" : 48,          "count" : 853        },        {          "value" : 161,          "count" : 820        },        {          "value" : 234,          "count" : 750        },        {          "value" : 249,          "count" : 722        },        {          "value" : 164,          "count" : 663        },        {          "value" : 114,          "count" : 646        }      ]    },    "RatecodeID" : {      "count" : 19998,      "cardinality" : 5,      "min_value" : 1,      "max_value" : 5,      "mean_value" : 1.0656565656565653,      "median_value" : 1,      "top_hits" : [        {          "value" : 1,          "count" : 19311        },        {          "value" : 2,          "count" : 468        },        {          "value" : 5,          "count" : 195        },        {          "value" : 4,          "count" : 17        },        {          "value" : 3,          "count" : 7        }      ]    },    "VendorID" : {      "count" : 19998,      "cardinality" : 2,      "min_value" : 1,      "max_value" : 2,      "mean_value" : 1.59005900590059,      "median_value" : 2,      "top_hits" : [        {          "value" : 2,          "count" : 11800        },        {          "value" : 1,          "count" : 8198        }      ]    },    "extra" : {      "count" : 19998,      "cardinality" : 3,      "min_value" : -0.5,      "max_value" : 0.5,      "mean_value" : 0.4815981598159816,      "median_value" : 0.5,      "top_hits" : [        {          "value" : 0.5,          "count" : 19281        },        {          "value" : 0,          "count" : 698        },        {          "value" : -0.5,          "count" : 19        }      ]    },    "fare_amount" : {      "count" : 19998,      "cardinality" : 208,      "min_value" : -100,      "max_value" : 300,      "mean_value" : 13.937719771977209,      "median_value" : 9.5,      "top_hits" : [        {          "value" : 6,          "count" : 1004        },        {          "value" : 6.5,          "count" : 935        },        {          "value" : 5.5,          "count" : 909        },        {          "value" : 7,          "count" : 903        },        {          "value" : 5,          "count" : 889        },        {          "value" : 7.5,          "count" : 854        },        {          "value" : 4.5,          "count" : 802        },        {          "value" : 8.5,          "count" : 790        },        {          "value" : 8,          "count" : 789        },        {          "value" : 9,          "count" : 711        }      ]    },    "improvement_surcharge" : {      "count" : 19998,      "cardinality" : 3,      "min_value" : -0.3,      "max_value" : 0.3,      "mean_value" : 0.29915991599159913,      "median_value" : 0.3,      "top_hits" : [        {          "value" : 0.3,          "count" : 19964        },        {          "value" : -0.3,          "count" : 22        },        {          "value" : 0,          "count" : 12        }      ]    },    "mta_tax" : {      "count" : 19998,      "cardinality" : 3,      "min_value" : -0.5,      "max_value" : 0.5,      "mean_value" : 0.4962246224622462,      "median_value" : 0.5,      "top_hits" : [        {          "value" : 0.5,          "count" : 19868        },        {          "value" : 0,          "count" : 109        },        {          "value" : -0.5,          "count" : 21        }      ]    },    "passenger_count" : {      "count" : 19998,      "cardinality" : 7,      "min_value" : 0,      "max_value" : 6,      "mean_value" : 1.6201620162016201,      "median_value" : 1,      "top_hits" : [        {          "value" : 1,          "count" : 14219        },        {          "value" : 2,          "count" : 2886        },        {          "value" : 5,          "count" : 1047        },        {          "value" : 3,          "count" : 804        },        {          "value" : 6,          "count" : 523        },        {          "value" : 4,          "count" : 406        },        {          "value" : 0,          "count" : 113        }      ]    },    "payment_type" : {      "count" : 19998,      "cardinality" : 4,      "min_value" : 1,      "max_value" : 4,      "mean_value" : 1.315631563156316,      "median_value" : 1,      "top_hits" : [        {          "value" : 1,          "count" : 13936        },        {          "value" : 2,          "count" : 5857        },        {          "value" : 3,          "count" : 160        },        {          "value" : 4,          "count" : 45        }      ]    },    "store_and_fwd_flag" : {      "count" : 19998,      "cardinality" : 2,      "top_hits" : [        {          "value" : "N",          "count" : 19910        },        {          "value" : "Y",          "count" : 88        }      ]    },    "tip_amount" : {      "count" : 19998,      "cardinality" : 717,      "min_value" : 0,      "max_value" : 128,      "mean_value" : 2.010959095909593,      "median_value" : 1.45,      "top_hits" : [        {          "value" : 0,          "count" : 6917        },        {          "value" : 1,          "count" : 1178        },        {          "value" : 2,          "count" : 624        },        {          "value" : 3,          "count" : 248        },        {          "value" : 1.56,          "count" : 206        },        {          "value" : 1.46,          "count" : 205        },        {          "value" : 1.76,          "count" : 196        },        {          "value" : 1.45,          "count" : 195        },        {          "value" : 1.36,          "count" : 191        },        {          "value" : 1.5,          "count" : 187        }      ]    },    "tolls_amount" : {      "count" : 19998,      "cardinality" : 26,      "min_value" : 0,      "max_value" : 35,      "mean_value" : 0.2729697969796978,      "median_value" : 0,      "top_hits" : [        {          "value" : 0,          "count" : 19107        },        {          "value" : 5.76,          "count" : 791        },        {          "value" : 10.5,          "count" : 36        },        {          "value" : 2.64,          "count" : 21        },        {          "value" : 11.52,          "count" : 8        },        {          "value" : 5.54,          "count" : 4        },        {          "value" : 8.5,          "count" : 4        },        {          "value" : 17.28,          "count" : 4        },        {          "value" : 2,          "count" : 2        },        {          "value" : 2.16,          "count" : 2        }      ]    },    "total_amount" : {      "count" : 19998,      "cardinality" : 1267,      "min_value" : -100.3,      "max_value" : 389.12,      "mean_value" : 17.499898989898995,      "median_value" : 12.35,      "top_hits" : [        {          "value" : 7.3,          "count" : 478        },        {          "value" : 8.3,          "count" : 443        },        {          "value" : 8.8,          "count" : 420        },        {          "value" : 6.8,          "count" : 406        },        {          "value" : 7.8,          "count" : 405        },        {          "value" : 6.3,          "count" : 371        },        {          "value" : 9.8,          "count" : 368        },        {          "value" : 5.8,          "count" : 362        },        {          "value" : 9.3,          "count" : 332        },        {          "value" : 10.3,          "count" : 332        }      ]    },    "tpep_dropoff_datetime" : {      "count" : 19998,      "cardinality" : 9066,      "earliest" : "2018-05-31 06:18:15",      "latest" : "2018-06-02 02:25:44",      "top_hits" : [        {          "value" : "2018-06-01 01:12:12",          "count" : 10        },        {          "value" : "2018-06-01 00:32:15",          "count" : 9        },        {          "value" : "2018-06-01 00:44:27",          "count" : 9        },        {          "value" : "2018-06-01 00:46:42",          "count" : 9        },        {          "value" : "2018-06-01 01:03:22",          "count" : 9        },        {          "value" : "2018-06-01 01:05:13",          "count" : 9        },        {          "value" : "2018-06-01 00:11:20",          "count" : 8        },        {          "value" : "2018-06-01 00:16:03",          "count" : 8        },        {          "value" : "2018-06-01 00:19:47",          "count" : 8        },        {          "value" : "2018-06-01 00:25:17",          "count" : 8        }      ]    },    "tpep_pickup_datetime" : {      "count" : 19998,      "cardinality" : 8760,      "earliest" : "2018-05-31 06:08:31",      "latest" : "2018-06-02 01:21:21",      "top_hits" : [        {          "value" : "2018-06-01 00:01:23",          "count" : 12        },        {          "value" : "2018-06-01 00:04:31",          "count" : 10        },        {          "value" : "2018-06-01 00:05:38",          "count" : 10        },        {          "value" : "2018-06-01 00:09:50",          "count" : 10        },        {          "value" : "2018-06-01 00:12:01",          "count" : 10        },        {          "value" : "2018-06-01 00:14:17",          "count" : 10        },        {          "value" : "2018-06-01 00:00:34",          "count" : 9        },        {          "value" : "2018-06-01 00:00:40",          "count" : 9        },        {          "value" : "2018-06-01 00:02:53",          "count" : 9        },        {          "value" : "2018-06-01 00:05:40",          "count" : 9        }      ]    },    "trip_distance" : {      "count" : 19998,      "cardinality" : 1687,      "min_value" : 0,      "max_value" : 64.63,      "mean_value" : 3.6521062106210715,      "median_value" : 2.16,      "top_hits" : [        {          "value" : 0.9,          "count" : 335        },        {          "value" : 0.8,          "count" : 320        },        {          "value" : 1.1,          "count" : 316        },        {          "value" : 0.7,          "count" : 304        },        {          "value" : 1.2,          "count" : 303        },        {          "value" : 1,          "count" : 296        },        {          "value" : 1.3,          "count" : 280        },        {          "value" : 1.5,          "count" : 268        },        {          "value" : 1.6,          "count" : 268        },        {          "value" : 0.6,          "count" : 256        }      ]    }  }}----// NOTCONSOLE<1> `num_messages_analyzed` is 2 lower than `num_lines_analyzed` because onlydata records count as messages. The first line contains the column names and inthis sample the second line is blank.<2> Unlike the first example, in this case the `format` has been identified as`delimited`.<3> Because the `format` is `delimited`, the `column_names` field in the outputlists the column names in the order they appear in the sample.<4> `has_header_row` indicates that for this sample the column names were inthe first row of the sample. (If they hadn't been then it would have been a goodidea to specify them in the `column_names` query parameter.)<5> The `delimiter` for this sample is a comma, as it's CSV formatted text.<6> The `quote` character is the default double quote. (The structure finderdoes not attempt to deduce any other quote character, so if you have delimitedtext that's quoted with some other character you must specify it using the`quote` query parameter.)<7> The `timestamp_field` has been chosen to be `tpep_pickup_datetime`.`tpep_dropoff_datetime` would work just as well, but `tpep_pickup_datetime` waschosen because it comes first in the column order. If you prefer`tpep_dropoff_datetime` then force it to be chosen using the`timestamp_field` query parameter.<8> `joda_timestamp_formats` are used to tell {ls} how to parse timestamps.<9> `java_timestamp_formats` are the Java time formats recognized in the timefields. {es} mappings and ingest pipelines use this format.<10> The timestamp format in this sample doesn't specify a timezone, so toaccurately convert them to UTC timestamps to store in {es} it's necessary tosupply the timezone they relate to. `need_client_timezone` will be `false` fortimestamp formats that include the timezone.[discrete][[find-structure-example-timeout]]=== Setting the timeout parameterIf you try to analyze a lot of data then the analysis will take a long time. Ifyou want to limit the amount of processing your {es} cluster performs for arequest, use the `timeout` query parameter. The analysis will be aborted and anerror returned when the timeout expires. For example, you can replace 20000lines in the previous example with 200000 and set a 1 second timeout on theanalysis:[source,js]----curl -s "s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2018-06.csv" | head -200000 | curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty&lines_to_sample=200000&timeout=1s" -T -----// NOTCONSOLE// Not converting to console because this shows how curl can be usedUnless you are using an incredibly fast computer you'll receive a timeout error:[source,js]----{  "error" : {    "root_cause" : [      {        "type" : "timeout_exception",        "reason" : "Aborting structure analysis during [delimited record parsing] as it has taken longer than the timeout of [1s]"      }    ],    "type" : "timeout_exception",    "reason" : "Aborting structure analysis during [delimited record parsing] as it has taken longer than the timeout of [1s]"  },  "status" : 500}----// NOTCONSOLE--NOTE: If you try the example above yourself you will note that the overallrunning time of the `curl` commands is considerably longer than 1 second. Thisis because it takes a while to download 200000 lines of CSV from the internet,and the timeout is measured from the time this endpoint starts to process thedata.--[discrete][[find-structure-example-eslog]]=== Analyzing {es} log filesThis is an example of analyzing an {es} log file:[source,js]----curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty" -T "$ES_HOME/logs/elasticsearch.log"----// NOTCONSOLE// Not converting to console because this shows how curl can be usedIf the request does not encounter errors, the result will look something likethis:[source,js]----{  "num_lines_analyzed" : 53,  "num_messages_analyzed" : 53,  "sample_start" : "[2018-09-27T14:39:28,518][INFO ][o.e.e.NodeEnvironment    ] [node-0] using [1] data paths, mounts [[/ (/dev/disk1)]], net usable_space [165.4gb], net total_space [464.7gb], types [hfs]\n[2018-09-27T14:39:28,521][INFO ][o.e.e.NodeEnvironment    ] [node-0] heap size [494.9mb], compressed ordinary object pointers [true]\n",  "charset" : "UTF-8",  "has_byte_order_marker" : false,  "format" : "semi_structured_text", <1>  "multiline_start_pattern" : "^\\[\\b\\d{4}-\\d{2}-\\d{2}[T ]\\d{2}:\\d{2}", <2>  "grok_pattern" : "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel}.*", <3>  "timestamp_field" : "timestamp",  "joda_timestamp_formats" : [    "ISO8601"  ],  "java_timestamp_formats" : [    "ISO8601"  ],  "need_client_timezone" : true,  "mappings" : {    "properties" : {      "@timestamp" : {        "type" : "date"      },      "loglevel" : {        "type" : "keyword"      },      "message" : {        "type" : "text"      }    }  },  "ingest_pipeline" : {    "description" : "Ingest pipeline created by text structure finder",    "processors" : [      {        "grok" : {          "field" : "message",          "patterns" : [            "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel}.*"          ]        }      },      {        "date" : {          "field" : "timestamp",          "timezone" : "{{ event.timezone }}",          "formats" : [            "ISO8601"          ]        }      },      {        "remove" : {          "field" : "timestamp"        }      }    ]  },  "field_stats" : {    "loglevel" : {      "count" : 53,      "cardinality" : 3,      "top_hits" : [        {          "value" : "INFO",          "count" : 51        },        {          "value" : "DEBUG",          "count" : 1        },        {          "value" : "WARN",          "count" : 1        }      ]    },    "timestamp" : {      "count" : 53,      "cardinality" : 28,      "earliest" : "2018-09-27T14:39:28,518",      "latest" : "2018-09-27T14:39:37,012",      "top_hits" : [        {          "value" : "2018-09-27T14:39:29,859",          "count" : 10        },        {          "value" : "2018-09-27T14:39:29,860",          "count" : 9        },        {          "value" : "2018-09-27T14:39:29,858",          "count" : 6        },        {          "value" : "2018-09-27T14:39:28,523",          "count" : 3        },        {          "value" : "2018-09-27T14:39:34,234",          "count" : 2        },        {          "value" : "2018-09-27T14:39:28,518",          "count" : 1        },        {          "value" : "2018-09-27T14:39:28,521",          "count" : 1        },        {          "value" : "2018-09-27T14:39:28,522",          "count" : 1        },        {          "value" : "2018-09-27T14:39:29,861",          "count" : 1        },        {          "value" : "2018-09-27T14:39:32,786",          "count" : 1        }      ]    }  }}----// NOTCONSOLE<1> This time the `format` has been identified as `semi_structured_text`.<2> The `multiline_start_pattern` is set on the basis that the timestamp appearsin the first line of each multi-line log message.<3> A very simple `grok_pattern` has been created, which extracts the timestampand recognizable fields that appear in every analyzed message. In this case theonly field that was recognized beyond the timestamp was the log level.[discrete][[find-structure-example-grok]]=== Specifying `grok_pattern` as query parameterIf you recognize more fields than the simple `grok_pattern` produced by thestructure finder unaided then you can resubmit the request specifying a moreadvanced `grok_pattern` as a query parameter and the structure finder willcalculate `field_stats` for your additional fields.In the case of the {es} log a more complete Grok pattern is`\[%{TIMESTAMP_ISO8601:timestamp}\]\[%{LOGLEVEL:loglevel} *\]\[%{JAVACLASS:class} *\] \[%{HOSTNAME:node}\] %{JAVALOGMESSAGE:message}`.You can analyze the same text again, submitting this `grok_pattern` as aquery parameter (appropriately URL escaped):[source,js]----curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty&format=semi_structured_text&grok_pattern=%5C%5B%25%7BTIMESTAMP_ISO8601:timestamp%7D%5C%5D%5C%5B%25%7BLOGLEVEL:loglevel%7D%20*%5C%5D%5C%5B%25%7BJAVACLASS:class%7D%20*%5C%5D%20%5C%5B%25%7BHOSTNAME:node%7D%5C%5D%20%25%7BJAVALOGMESSAGE:message%7D" -T "$ES_HOME/logs/elasticsearch.log"----// NOTCONSOLE// Not converting to console because this shows how curl can be usedIf the request does not encounter errors, the result will look something likethis:[source,js]----{  "num_lines_analyzed" : 53,  "num_messages_analyzed" : 53,  "sample_start" : "[2018-09-27T14:39:28,518][INFO ][o.e.e.NodeEnvironment    ] [node-0] using [1] data paths, mounts [[/ (/dev/disk1)]], net usable_space [165.4gb], net total_space [464.7gb], types [hfs]\n[2018-09-27T14:39:28,521][INFO ][o.e.e.NodeEnvironment    ] [node-0] heap size [494.9mb], compressed ordinary object pointers [true]\n",  "charset" : "UTF-8",  "has_byte_order_marker" : false,  "format" : "semi_structured_text",  "multiline_start_pattern" : "^\\[\\b\\d{4}-\\d{2}-\\d{2}[T ]\\d{2}:\\d{2}",  "grok_pattern" : "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel} *\\]\\[%{JAVACLASS:class} *\\] \\[%{HOSTNAME:node}\\] %{JAVALOGMESSAGE:message}", <1>  "timestamp_field" : "timestamp",  "joda_timestamp_formats" : [    "ISO8601"  ],  "java_timestamp_formats" : [    "ISO8601"  ],  "need_client_timezone" : true,  "mappings" : {    "properties" : {      "@timestamp" : {        "type" : "date"      },      "class" : {        "type" : "keyword"      },      "loglevel" : {        "type" : "keyword"      },      "message" : {        "type" : "text"      },      "node" : {        "type" : "keyword"      }    }  },  "ingest_pipeline" : {    "description" : "Ingest pipeline created by text structure finder",    "processors" : [      {        "grok" : {          "field" : "message",          "patterns" : [            "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel} *\\]\\[%{JAVACLASS:class} *\\] \\[%{HOSTNAME:node}\\] %{JAVALOGMESSAGE:message}"          ]        }      },      {        "date" : {          "field" : "timestamp",          "timezone" : "{{ event.timezone }}",          "formats" : [            "ISO8601"          ]        }      },      {        "remove" : {          "field" : "timestamp"        }      }    ]  },  "field_stats" : { <2>    "class" : {      "count" : 53,      "cardinality" : 14,      "top_hits" : [        {          "value" : "o.e.p.PluginsService",          "count" : 26        },        {          "value" : "o.e.c.m.MetadataIndexTemplateService",          "count" : 8        },        {          "value" : "o.e.n.Node",          "count" : 7        },        {          "value" : "o.e.e.NodeEnvironment",          "count" : 2        },        {          "value" : "o.e.a.ActionModule",          "count" : 1        },        {          "value" : "o.e.c.s.ClusterApplierService",          "count" : 1        },        {          "value" : "o.e.c.s.MasterService",          "count" : 1        },        {          "value" : "o.e.d.DiscoveryModule",          "count" : 1        },        {          "value" : "o.e.g.GatewayService",          "count" : 1        },        {          "value" : "o.e.l.LicenseService",          "count" : 1        }      ]    },    "loglevel" : {      "count" : 53,      "cardinality" : 3,      "top_hits" : [        {          "value" : "INFO",          "count" : 51        },        {          "value" : "DEBUG",          "count" : 1        },        {          "value" : "WARN",          "count" : 1        }      ]    },    "message" : {      "count" : 53,      "cardinality" : 53,      "top_hits" : [        {          "value" : "Using REST wrapper from plugin org.elasticsearch.xpack.security.Security",          "count" : 1        },        {          "value" : "adding template [.monitoring-alerts] for index patterns [.monitoring-alerts-6]",          "count" : 1        },        {          "value" : "adding template [.monitoring-beats] for index patterns [.monitoring-beats-6-*]",          "count" : 1        },        {          "value" : "adding template [.monitoring-es] for index patterns [.monitoring-es-6-*]",          "count" : 1        },        {          "value" : "adding template [.monitoring-kibana] for index patterns [.monitoring-kibana-6-*]",          "count" : 1        },        {          "value" : "adding template [.monitoring-logstash] for index patterns [.monitoring-logstash-6-*]",          "count" : 1        },        {          "value" : "adding template [.triggered_watches] for index patterns [.triggered_watches*]",          "count" : 1        },        {          "value" : "adding template [.watch-history-9] for index patterns [.watcher-history-9*]",          "count" : 1        },        {          "value" : "adding template [.watches] for index patterns [.watches*]",          "count" : 1        },        {          "value" : "starting ...",          "count" : 1        }      ]    },    "node" : {      "count" : 53,      "cardinality" : 1,      "top_hits" : [        {          "value" : "node-0",          "count" : 53        }      ]    },    "timestamp" : {      "count" : 53,      "cardinality" : 28,      "earliest" : "2018-09-27T14:39:28,518",      "latest" : "2018-09-27T14:39:37,012",      "top_hits" : [        {          "value" : "2018-09-27T14:39:29,859",          "count" : 10        },        {          "value" : "2018-09-27T14:39:29,860",          "count" : 9        },        {          "value" : "2018-09-27T14:39:29,858",          "count" : 6        },        {          "value" : "2018-09-27T14:39:28,523",          "count" : 3        },        {          "value" : "2018-09-27T14:39:34,234",          "count" : 2        },        {          "value" : "2018-09-27T14:39:28,518",          "count" : 1        },        {          "value" : "2018-09-27T14:39:28,521",          "count" : 1        },        {          "value" : "2018-09-27T14:39:28,522",          "count" : 1        },        {          "value" : "2018-09-27T14:39:29,861",          "count" : 1        },        {          "value" : "2018-09-27T14:39:32,786",          "count" : 1        }      ]    }  }}----// NOTCONSOLE<1> The `grok_pattern` in the output is now the overridden one supplied in thequery parameter.<2> The returned `field_stats` include entries for the fields from theoverridden `grok_pattern`.The URL escaping is hard, so if you are working interactively it is best to usethe UI!
 |