| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 | [[docs-termvectors]]== Term VectorsReturns information and statistics on terms in the fields of a particulardocument. The document could be stored in the index or artificially providedby the user. Term vectors are <<realtime,realtime>> by default, not nearrealtime. This can be changed by setting `realtime` parameter to `false`.[source,js]--------------------------------------------------GET /twitter/_doc/1/_termvectors--------------------------------------------------// CONSOLE// TEST[setup:twitter]Optionally, you can specify the fields for which the information isretrieved either with a parameter in the url[source,js]--------------------------------------------------GET /twitter/_doc/1/_termvectors?fields=message--------------------------------------------------// CONSOLE// TEST[setup:twitter]or by adding the requested fields in the request body (seeexample below). Fields can also be specified with wildcardsin similar way to the <<query-dsl-multi-match-query,multi match query>>[WARNING]Note that the usage of `/_termvector` is deprecated in 2.0, and replaced by `/_termvectors`.[float]=== Return valuesThree types of values can be requested: _term information_, _term statistics_and _field statistics_. By default, all term information and fieldstatistics are returned for all fields but no term statistics.[float]==== Term information * term frequency in the field (always returned) * term positions (`positions` : true) * start and end offsets (`offsets` : true) * term payloads (`payloads` : true), as base64 encoded bytesIf the requested information wasn't stored in the index, it will becomputed on the fly if possible. Additionally, term vectors could be computedfor documents not even existing in the index, but instead provided by the user.[WARNING]======Start and end offsets assume UTF-16 encoding is being used. If you want to usethese offsets in order to get the original text that produced this token, youshould make sure that the string you are taking a sub-string of is also encodedusing UTF-16.======[float]==== Term statisticsSetting `term_statistics` to `true` (default is `false`) willreturn * total term frequency (how often a term occurs in all documents) + * document frequency (the number of documents containing the current   term)By default these values are not returned since term statistics canhave a serious performance impact.[float]==== Field statisticsSetting `field_statistics` to `false` (default is `true`) willomit : * document count (how many documents contain this field) * sum of document frequencies (the sum of document frequencies for all   terms in this field) * sum of total term frequencies (the sum of total term frequencies of   each term in this field)[float]==== Terms FilteringWith the parameter `filter`, the terms returned could also be filtered basedon their tf-idf scores. This could be useful in order find out a goodcharacteristic vector of a document. This feature works in a similar manner tothe <<mlt-query-term-selection,second phase>> of the<<query-dsl-mlt-query,More Like This Query>>. See <<docs-termvectors-terms-filtering,example 5>>for usage.The following sub-parameters are supported:[horizontal]`max_num_terms`::  Maximum number of terms that must be returned per field. Defaults to `25`.`min_term_freq`::  Ignore words with less than this frequency in the source doc. Defaults to `1`.`max_term_freq`::  Ignore words with more than this frequency in the source doc. Defaults to unbounded.`min_doc_freq`::  Ignore terms which do not occur in at least this many docs. Defaults to `1`.`max_doc_freq`::  Ignore words which occur in more than this many docs. Defaults to unbounded.`min_word_length`::  The minimum word length below which words will be ignored. Defaults to `0`.`max_word_length`::  The maximum word length above which words will be ignored. Defaults to unbounded (`0`).[float]=== BehaviourThe term and field statistics are not accurate. Deleted documentsare not taken into account. The information is only retrieved for theshard the requested document resides in.The term and field statistics are therefore only useful as relative measureswhereas the absolute numbers have no meaning in this context. By default,when requesting term vectors of artificial documents, a shard to get the statisticsfrom is randomly selected. Use `routing` only to hit a particular shard.[float]==== Example: Returning stored term vectorsFirst, we create an index that stores term vectors, payloads etc. :[source,js]--------------------------------------------------PUT /twitter/{ "mappings": {    "_doc": {      "properties": {        "text": {          "type": "text",          "term_vector": "with_positions_offsets_payloads",          "store" : true,          "analyzer" : "fulltext_analyzer"         },         "fullname": {          "type": "text",          "term_vector": "with_positions_offsets_payloads",          "analyzer" : "fulltext_analyzer"        }      }    }  },  "settings" : {    "index" : {      "number_of_shards" : 1,      "number_of_replicas" : 0    },    "analysis": {      "analyzer": {        "fulltext_analyzer": {          "type": "custom",          "tokenizer": "whitespace",          "filter": [            "lowercase",            "type_as_payload"          ]        }      }    }  }}--------------------------------------------------// CONSOLESecond, we add some documents:[source,js]--------------------------------------------------PUT /twitter/_doc/1{  "fullname" : "John Doe",  "text" : "twitter test test test "}PUT /twitter/_doc/2{  "fullname" : "Jane Doe",  "text" : "Another twitter test ..."}--------------------------------------------------// CONSOLE// TEST[continued]The following request returns all information and statistics for field`text` in document `1` (John Doe):[source,js]--------------------------------------------------GET /twitter/_doc/1/_termvectors{  "fields" : ["text"],  "offsets" : true,  "payloads" : true,  "positions" : true,  "term_statistics" : true,  "field_statistics" : true}--------------------------------------------------// CONSOLE// TEST[continued]Response:[source,js]--------------------------------------------------{    "_id": "1",    "_index": "twitter",    "_type": "_doc",    "_version": 1,    "found": true,    "took": 6,    "term_vectors": {        "text": {            "field_statistics": {                "doc_count": 2,                "sum_doc_freq": 6,                "sum_ttf": 8            },            "terms": {                "test": {                    "doc_freq": 2,                    "term_freq": 3,                    "tokens": [                        {                            "end_offset": 12,                            "payload": "d29yZA==",                            "position": 1,                            "start_offset": 8                        },                        {                            "end_offset": 17,                            "payload": "d29yZA==",                            "position": 2,                            "start_offset": 13                        },                        {                            "end_offset": 22,                            "payload": "d29yZA==",                            "position": 3,                            "start_offset": 18                        }                    ],                    "ttf": 4                },                "twitter": {                    "doc_freq": 2,                    "term_freq": 1,                    "tokens": [                        {                            "end_offset": 7,                            "payload": "d29yZA==",                            "position": 0,                            "start_offset": 0                        }                    ],                    "ttf": 2                }            }        }    }}--------------------------------------------------// TEST[continued]// TESTRESPONSE[s/"took": 6/"took": "$body.took"/][float]==== Example: Generating term vectors on the flyTerm vectors which are not explicitly stored in the index are automaticallycomputed on the fly. The following request returns all information and statistics for thefields in document `1`, even though the terms haven't been explicitly stored in the index.Note that for the field `text`, the terms are not re-generated.[source,js]--------------------------------------------------GET /twitter/_doc/1/_termvectors{  "fields" : ["text", "some_field_without_term_vectors"],  "offsets" : true,  "positions" : true,  "term_statistics" : true,  "field_statistics" : true}--------------------------------------------------// CONSOLE// TEST[continued][[docs-termvectors-artificial-doc]][float]==== Example: Artificial documentsTerm vectors can also be generated for artificial documents,that is for documents not present in the index.  For example, the following request wouldreturn the same results as in example 1. The mapping used is determined by the`index` and `type`.*If dynamic mapping is turned on (default), the document fields not in the originalmapping will be dynamically created.*[source,js]--------------------------------------------------GET /twitter/_doc/_termvectors{  "doc" : {    "fullname" : "John Doe",    "text" : "twitter test test test"  }}--------------------------------------------------// CONSOLE// TEST[continued][[docs-termvectors-per-field-analyzer]][float]===== Per-field analyzerAdditionally, a different analyzer than the one at the field may be providedby using the `per_field_analyzer` parameter. This is useful in order togenerate term vectors in any fashion, especially when using artificialdocuments. When providing an analyzer for a field that already stores termvectors, the term vectors will be re-generated.[source,js]--------------------------------------------------GET /twitter/_doc/_termvectors{  "doc" : {    "fullname" : "John Doe",    "text" : "twitter test test test"  },  "fields": ["fullname"],  "per_field_analyzer" : {    "fullname": "keyword"  }}--------------------------------------------------// CONSOLE// TEST[continued]Response:[source,js]--------------------------------------------------{  "_index": "twitter",  "_type": "_doc",  "_version": 0,  "found": true,  "took": 6,  "term_vectors": {    "fullname": {       "field_statistics": {          "sum_doc_freq": 2,          "doc_count": 4,          "sum_ttf": 4       },       "terms": {          "John Doe": {             "term_freq": 1,             "tokens": [                {                   "position": 0,                   "start_offset": 0,                   "end_offset": 8                }             ]          }       }    }  }}--------------------------------------------------// TEST[continued]// TESTRESPONSE[s/"took": 6/"took": "$body.took"/]// TESTRESPONSE[s/"sum_doc_freq": 2/"sum_doc_freq": "$body.term_vectors.fullname.field_statistics.sum_doc_freq"/]// TESTRESPONSE[s/"doc_count": 4/"doc_count": "$body.term_vectors.fullname.field_statistics.doc_count"/]// TESTRESPONSE[s/"sum_ttf": 4/"sum_ttf": "$body.term_vectors.fullname.field_statistics.sum_ttf"/][[docs-termvectors-terms-filtering]][float]==== Example: Terms filteringFinally, the terms returned could be filtered based on their tf-idf scores. Inthe example below we obtain the three most "interesting" keywords from theartificial document having the given "plot" field value. Noticethat the keyword "Tony" or any stop words are not part of the response, astheir tf-idf must be too low.[source,js]--------------------------------------------------GET /imdb/_doc/_termvectors{    "doc": {      "plot": "When wealthy industrialist Tony Stark is forced to build an armored suit after a life-threatening incident, he ultimately decides to use its technology to fight against evil."    },    "term_statistics" : true,    "field_statistics" : true,    "positions": false,    "offsets": false,    "filter" : {      "max_num_terms" : 3,      "min_term_freq" : 1,      "min_doc_freq" : 1    }}--------------------------------------------------// CONSOLE// TEST[skip:no imdb test index]Response:[source,js]--------------------------------------------------{   "_index": "imdb",   "_type": "_doc",   "_version": 0,   "found": true,   "term_vectors": {      "plot": {         "field_statistics": {            "sum_doc_freq": 3384269,            "doc_count": 176214,            "sum_ttf": 3753460         },         "terms": {            "armored": {               "doc_freq": 27,               "ttf": 27,               "term_freq": 1,               "score": 9.74725            },            "industrialist": {               "doc_freq": 88,               "ttf": 88,               "term_freq": 1,               "score": 8.590818            },            "stark": {               "doc_freq": 44,               "ttf": 47,               "term_freq": 1,               "score": 9.272792            }         }      }   }}--------------------------------------------------// TESTRESPONSE
 |