| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631 | [role="xpack"][testenv="platinum"][[put-dfanalytics]]=== Create {dfanalytics-jobs} API[subs="attributes"]++++<titleabbrev>Create {dfanalytics-jobs}</titleabbrev>++++Instantiates a {dfanalytics-job}.experimental[][[ml-put-dfanalytics-request]]==== {api-request-title}`PUT _ml/data_frame/analytics/<data_frame_analytics_id>`[[ml-put-dfanalytics-prereq]]==== {api-prereq-title}If the {es} {security-features} are enabled, you must have the following built-in roles and privileges:* `machine_learning_admin`* `kibana_admin` (UI only)* source indices: `read`, `view_index_metadata`* destination index: `read`, `create_index`, `manage` and `index`* cluster: `monitor` (UI only)  For more information, see <<security-privileges>> and <<built-in-roles>>.NOTE: The {dfanalytics-job} remembers which roles the user who created it had atthe time of creation. When you start the job, it performs the analysis usingthose same roles. If you provide<<http-clients-secondary-authorization,secondary authorization headers>>, those credentials are used instead.[[ml-put-dfanalytics-desc]]==== {api-description-title}This API creates a {dfanalytics-job} that performs an analysis on the source indices and stores the outcome in a destination index.If the destination index does not exist, it is created automatically when youstart the job. See <<start-dfanalytics>>.If you supply only a subset of the {regression} or {classification} parameters,{ml-docs}/hyperparameters.html[hyperparameter optimization] occurs. Itdetermines a value for each of the undefined parameters. [[ml-put-dfanalytics-path-params]]==== {api-path-parms-title}`<data_frame_analytics_id>`::(Required, string)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=job-id-data-frame-analytics-define][role="child_attributes"][[ml-put-dfanalytics-request-body]]==== {api-request-body-title}`allow_lazy_start`::(Optional, boolean) Specifies whether this job can start when there is insufficient {ml} node capacity for it to be immediately assigned to a node. The default is `false`; ifa {ml} node with capacity to run the job cannot immediately be found, the APIreturns an error. However, this is also subject to the cluster-wide`xpack.ml.max_lazy_ml_nodes` setting. See <<advanced-ml-settings>>. If thisoption is set to `true`, the API does not return an error and the job waits inthe `starting` state until sufficient {ml} node capacity is available.//Begin analysis`analysis`::(Required, object)The analysis configuration, which contains the information necessary to performone of the following types of analysis: {classification}, {oldetection}, or{regression}.+.Properties of `analysis`[%collapsible%open]====//Begin classification`classification`:::(Required^*^, object)The configuration information necessary to perform{ml-docs}/dfa-classification.html[{classification}].+TIP: Advanced parameters are for fine-tuning {classanalysis}. They are set automatically by hyperparameter optimization to give the minimum validationerror. It is highly recommended to use the default values unless you fullyunderstand the function of these parameters.+.Properties of `classification`[%collapsible%open]=====`class_assignment_objective`::::(Optional, string)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=class-assignment-objective]`dependent_variable`::::(Required, string)+include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dependent-variable]+The data type of the field must be numeric (`integer`, `short`, `long`, `byte`), categorical (`ip` or `keyword`), or boolean. There must be no more than 30different values in this field. `eta`::::(Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=eta]`feature_bag_fraction`::::(Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]`gamma`::::(Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=gamma]`lambda`::::(Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=lambda]`max_trees`::::(Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=max-trees]`num_top_classes`::::(Optional, integer)Defines the number of categories for which the predicted probabilities arereported. It must be non-negative. If it is greater than the total number ofcategories, the API reports all category probabilities. Defaults to 2.`num_top_feature_importance_values`::::(Optional, integer)Advanced configuration option. Specifies the maximum number of{ml-docs}/ml-feature-importance.html[{feat-imp}] values per document to return. By default, it is zero and no {feat-imp} calculation occurs.`prediction_field_name`::::(Optional, string) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=prediction-field-name]`randomize_seed`::::(Optional, long)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=randomize-seed]`training_percent`::::(Optional, integer)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=training-percent]//End classification=====//Begin outlier_detection`outlier_detection`:::(Required^*^, object)The configuration information necessary to perform{ml-docs}/dfa-outlier-detection.html[{oldetection}]:+.Properties of `outlier_detection`[%collapsible%open]=====`compute_feature_influence`::::(Optional, boolean) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=compute-feature-influence]  `feature_influence_threshold`:::: (Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=feature-influence-threshold]`method`::::(Optional, string)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=method]  `n_neighbors`::::(Optional, integer)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=n-neighbors]  `outlier_fraction`::::(Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=outlier-fraction]  `standardization_enabled`::::(Optional, boolean) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=standardization-enabled]//End outlier_detection=====//Begin regression`regression`:::(Required^*^, object)The configuration information necessary to perform{ml-docs}/dfa-regression.html[{regression}].+TIP: Advanced parameters are for fine-tuning {reganalysis}. They are set automatically by hyperparameter optimization to give the minimum validationerror. It is highly recommended to use the default values unless you fullyunderstand the function of these parameters.+.Properties of `regression`[%collapsible%open]=====`dependent_variable`::::(Required, string)+include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dependent-variable]+The data type of the field must be numeric.`eta`::::(Optional, double)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=eta]`feature_bag_fraction`::::(Optional, double)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=feature-bag-fraction]`gamma`::::(Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=gamma]`lambda`::::(Optional, double) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=lambda]`loss_function`::::(Optional, string)The loss function used during {regression}. Available options are `mse` (mean squared error), `msle` (mean squared logarithmic error),  `huber` (Pseudo-Huber loss). Defaults to `mse`. Refer to {ml-docs}/dfa-regression.html#dfa-regression-lossfunction[Loss functions for {regression} analyses] to learn more.`loss_function_parameter`::::(Optional, double)A positive number that is used as a parameter to the `loss_function`.`max_trees`::::(Optional, integer) include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=max-trees]`num_top_feature_importance_values`::::(Optional, integer)Advanced configuration option. Specifies the maximum number of{ml-docs}/ml-feature-importance.html[{feat-imp}] values per document to return. By default, it is zero and no {feat-imp} calculation occurs.`prediction_field_name`::::(Optional, string)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=prediction-field-name]`randomize_seed`::::(Optional, long)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=randomize-seed]`training_percent`::::(Optional, integer)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=training-percent]=====//End regression====//End analysis//Begin analyzed_fields`analyzed_fields`::(Optional, object)Specify `includes` and/or `excludes` patterns to select which fields will be included in the analysis. The patterns specified in `excludes` are applied last, therefore `excludes` takes precedence. In other words, if the same field is specified in both `includes` and `excludes`, then the field will not be included in the analysis.+--[[dfa-supported-fields]]The supported fields for each type of analysis are as follows:* {oldetection-cap} requires numeric or boolean data to analyze. The algorithms don't support missing values therefore fields that have data types other than numeric or boolean are ignored. Documents where included fields contain missing values, null values, or an array are also ignored. Therefore the `dest` index may contain documents that don't have an {olscore}.* {regression-cap} supports fields that are numeric, `boolean`, `text`, `keyword`, and `ip`. It is also tolerant of missing values. Fields that are supported are included in the analysis, other fields are ignored. Documents where included fields contain  an array with two or more values are also ignored. Documents in the `dest` index  that don’t contain a results field are not included in the {reganalysis}.* {classification-cap} supports fields that are numeric, `boolean`, `text`,`keyword`, and `ip`. It is also tolerant of missing values. Fields that are supported are included in the analysis, other fields are ignored. Documentswhere included fields contain an array with two or more values are also ignored. Documents in the `dest` index that don’t contain a results field are notincluded in the {classanalysis}. {classanalysis-cap} can be improved by mappingordinal variable values to a  single number. For example, in case of age ranges,you can model the values as "0-14" = 0, "15-24" = 1, "25-34" = 2, and so on.If `analyzed_fields` is not set, only the relevant fields will be included. Forexample, all the numeric fields for {oldetection}. For more information aboutfield selection, see <<explain-dfanalytics>>.--+.Properties of `analyzed_fields`[%collapsible%open]====`excludes`:::(Optional, array)An array of strings that defines the fields that will be excluded from theanalysis. You do not need to add fields with unsupported data types to`excludes`, these fields are excluded from the analysis automatically.`includes`:::(Optional, array)An array of strings that defines the fields that will be included in the analysis.//End analyzed_fields====`description`::(Optional, string)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=description-dfa]`dest`::(Required, object)include::{es-repo-dir}/ml/ml-shared.asciidoc[tag=dest]  `model_memory_limit`::(Optional, string)The approximate maximum amount of memory resources that are permitted for analytical processing. The default value for {dfanalytics-jobs} is `1gb`. If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit` setting, an error occurs when you try to create {dfanalytics-jobs} that have `model_memory_limit` values greater than that setting. For more information, see <<ml-settings>>.  `source`::(object)The configuration of how to source the analysis data. It requires an `index`.Optionally, `query` and `_source` may be specified.+.Properties of `source`[%collapsible%open]====`index`:::(Required, string or array) Index or indices on which to perform the analysis.It can be a single index or index pattern as well as an array of indices orpatterns.+WARNING: If your source indices contain documents with the same IDs, only the document that is indexed last appears in the destination index.`query`:::(Optional, object) The {es} query domain-specific language (<<query-dsl,DSL>>).This value corresponds to the query object in an {es} search POST body. All theoptions that are supported by {es} can be used, as this object is passedverbatim to {es}. By default, this property has the following value:`{"match_all": {}}`.`_source`:::(Optional, object) Specify `includes` and/or `excludes` patterns to select whichfields will be present in the destination. Fields that are excluded cannot beincluded in the analysis.+.Properties of `_source`[%collapsible%open]=====`includes`::::(array) An array of strings that defines the fields that will be included in thedestination.        `excludes`::::(array) An array of strings that defines the fields that will be excluded fromthe destination.=========[[ml-put-dfanalytics-example]]==== {api-examples-title}[[ml-put-dfanalytics-example-preprocess]]===== Preprocessing actions exampleThe following example shows how to limit the scope of the analysis to certain fields, specify excluded fields in the destination index, and use a query to filter your data before analysis.[source,console]--------------------------------------------------PUT _ml/data_frame/analytics/model-flight-delays-pre{  "source": {    "index": [      "kibana_sample_data_flights" <1>    ],    "query": { <2>      "range": {        "DistanceKilometers": {           "gt": 0        }      }    },    "_source": { <3>      "includes": [],      "excludes": [        "FlightDelay",        "FlightDelayType"      ]    }  },  "dest": { <4>    "index": "df-flight-delays",    "results_field": "ml-results"  },  "analysis": {  "regression": {    "dependent_variable": "FlightDelayMin",    "training_percent": 90    }  },  "analyzed_fields": { <5>    "includes": [],    "excludes": [         "FlightNum"    ]  },  "model_memory_limit": "100mb"}--------------------------------------------------// TEST[skip:setup kibana sample data]<1> Source index to analyze.<2> This query filters out entire documents that will not be present in the destination index.<3> The `_source` object defines fields in the dataset that will be included or excluded in the destination index. <4> Defines the destination index that contains the results of the analysis and the fields of the source index specified in the `_source` object. Also defines the name of the `results_field`.<5> Specifies fields to be included in or excluded from the analysis. This does not affect whether the fields will be present in the destination index, only affects whether they are used in the analysis.In this example, we can see that all the fields of the source index are included in the destination index except `FlightDelay` and `FlightDelayType` because these are defined as excluded fields by the `excludes` parameter of the `_source` object. The `FlightNum` field is included in the destination index, however it is not included in the analysis because it is explicitly specified as excluded field by the `excludes` parameter of the `analyzed_fields` object.[[ml-put-dfanalytics-example-od]]===== {oldetection-cap} exampleThe following example creates the `loganalytics` {dfanalytics-job}, the analysis type is `outlier_detection`:[source,console]--------------------------------------------------PUT _ml/data_frame/analytics/loganalytics{  "description": "Outlier detection on log data",  "source": {    "index": "logdata"  },  "dest": {    "index": "logdata_out"  },  "analysis": {    "outlier_detection": {      "compute_feature_influence": true,      "outlier_fraction": 0.05,      "standardization_enabled": true    }  }}--------------------------------------------------// TEST[setup:setup_logdata]The API returns the following result:[source,console-result]----{    "id": "loganalytics",    "description": "Outlier detection on log data",    "source": {        "index": ["logdata"],        "query": {            "match_all": {}        }    },    "dest": {        "index": "logdata_out",        "results_field": "ml"    },    "analysis": {        "outlier_detection": {            "compute_feature_influence": true,            "outlier_fraction": 0.05,            "standardization_enabled": true        }    },    "model_memory_limit": "1gb",    "create_time" : 1562265491319,    "version" : "8.0.0",    "allow_lazy_start" : false}----// TESTRESPONSE[s/1562265491319/$body.$_path/]// TESTRESPONSE[s/"version" : "8.0.0"/"version" : $body.version/][[ml-put-dfanalytics-example-r]]===== {regression-cap} examplesThe following example creates the `house_price_regression_analysis` {dfanalytics-job}, the analysis type is `regression`:[source,console]--------------------------------------------------PUT _ml/data_frame/analytics/house_price_regression_analysis{  "source": {    "index": "houses_sold_last_10_yrs"  },  "dest": {    "index": "house_price_predictions"  },  "analysis":     {      "regression": {        "dependent_variable": "price"      }    }}--------------------------------------------------// TEST[skip:TBD]The API returns the following result:[source,console-result]----{  "id" : "house_price_regression_analysis",  "source" : {    "index" : [      "houses_sold_last_10_yrs"    ],    "query" : {      "match_all" : { }    }  },  "dest" : {    "index" : "house_price_predictions",    "results_field" : "ml"  },  "analysis" : {    "regression" : {      "dependent_variable" : "price",      "training_percent" : 100    }  },  "model_memory_limit" : "1gb",  "create_time" : 1567168659127,  "version" : "8.0.0",  "allow_lazy_start" : false}----// TESTRESPONSE[s/1567168659127/$body.$_path/]// TESTRESPONSE[s/"version": "8.0.0"/"version": $body.version/]The following example creates a job and specifies a training percent:[source,console]--------------------------------------------------PUT _ml/data_frame/analytics/student_performance_mathematics_0.3{ "source": {   "index": "student_performance_mathematics" }, "dest": {   "index":"student_performance_mathematics_reg" }, "analysis":   {     "regression": {       "dependent_variable": "G3",       "training_percent": 70,  <1>       "randomize_seed": 19673948271  <2>     }   }}--------------------------------------------------// TEST[skip:TBD]<1> The percentage of the data set that is used for training the model.<2> The seed that is used to randomly pick which data is used for training.[[ml-put-dfanalytics-example-c]]===== {classification-cap} exampleThe following example creates the `loan_classification` {dfanalytics-job}, the analysis type is `classification`:[source,console]--------------------------------------------------PUT _ml/data_frame/analytics/loan_classification{  "source" : {    "index": "loan-applicants"  },  "dest" : {    "index": "loan-applicants-classified"  },  "analysis" : {    "classification": {      "dependent_variable": "label",      "training_percent": 75,      "num_top_classes": 2    }  }}--------------------------------------------------// TEST[skip:TBD]
 |