| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 | --:api: evaluate-data-frame:request: EvaluateDataFrameRequest:response: EvaluateDataFrameResponse--[role="xpack"][id="{upid}-{api}"]=== Evaluate {dfanalytics} APIEvaluates the {dfanalytics} for an annotated index.The API accepts an +{request}+ object and returns an +{response}+.[id="{upid}-{api}-request"]==== Evaluate {dfanalytics} request["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-request]--------------------------------------------------<1> Constructing a new evaluation request<2> Reference to an existing index<3> The query with which to select data from indices<4> Evaluation to be performed==== EvaluationEvaluation to be performed.Currently, supported evaluations include: +OutlierDetection+, +Classification+, +Regression+.===== Outlier detection["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-evaluation-outlierdetection]--------------------------------------------------<1> Constructing a new evaluation<2> Name of the field in the index. Its value denotes the actual (i.e. ground truth) label for an example. Must be either true or false.<3> Name of the field in the index. Its value denotes the probability (as per some ML algorithm) of the example being classified as positive.<4> The remaining parameters are the metrics to be calculated based on the two fields described above<5> {wikipedia}/Precision_and_recall#Precision[Precision] calculated at thresholds: 0.4, 0.5 and 0.6<6> {wikipedia}/Precision_and_recall#Recall[Recall] calculated at thresholds: 0.5 and 0.7<7> {wikipedia}/Confusion_matrix[Confusion matrix] calculated at threshold 0.5<8> {wikipedia}/Receiver_operating_characteristic#Area_under_the_curve[AuC ROC] calculated and the curve points returned===== Classification["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-evaluation-classification]--------------------------------------------------<1> Constructing a new evaluation<2> Name of the field in the index. Its value denotes the actual (i.e. ground truth) class the example belongs to.<3> Name of the field in the index. Its value denotes the predicted (as per some ML algorithm) class of the example.<4> Name of the field in the index. Its value denotes the array of top classes. Must be nested.<5> The remaining parameters are the metrics to be calculated based on the two fields described above<6> Accuracy<7> Precision<8> Recall<9> Multiclass confusion matrix of size 3<10> {wikipedia}/Receiver_operating_characteristic#Area_under_the_curve[AuC ROC] calculated for class "cat" treated as positive and the rest as negative===== Regression["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-evaluation-regression]--------------------------------------------------<1> Constructing a new evaluation<2> Name of the field in the index. Its value denotes the actual (i.e. ground truth) value for an example.<3> Name of the field in the index. Its value denotes the predicted (as per some ML algorithm) value for the example.<4> The remaining parameters are the metrics to be calculated based on the two fields described above<5> {wikipedia}/Mean_squared_error[Mean squared error]<6> Mean squared logarithmic error<7> {wikipedia}/Huber_loss#Pseudo-Huber_loss_function[Pseudo Huber loss]<8> {wikipedia}/Coefficient_of_determination[R squared]include::../execution.asciidoc[][id="{upid}-{api}-response"]==== ResponseThe returned +{response}+ contains the requested evaluation metrics.["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-response]--------------------------------------------------<1> Fetching all the calculated metrics results==== Results===== Outlier detection["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-results-outlierdetection]--------------------------------------------------<1> Fetching precision metric by name<2> Fetching precision at a given (0.4) threshold<3> Fetching confusion matrix metric by name<4> Fetching confusion matrix at a given (0.5) threshold===== Classification["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-results-classification]--------------------------------------------------<1> Fetching accuracy metric by name<2> Fetching the actual accuracy value<3> Fetching precision metric by name<4> Fetching the actual precision value<5> Fetching recall metric by name<6> Fetching the actual recall value<7> Fetching multiclass confusion matrix metric by name<8> Fetching the contents of the confusion matrix<9> Fetching the number of classes that were not included in the matrix<10> Fetching AucRoc metric by name<11> Fetching the actual AucRoc score===== Regression["source","java",subs="attributes,callouts,macros"]--------------------------------------------------include-tagged::{doc-tests-file}[{api}-results-regression]--------------------------------------------------<1> Fetching mean squared error metric by name<2> Fetching the actual mean squared error value<3> Fetching mean squared logarithmic error metric by name<4> Fetching the actual mean squared logarithmic error value<5> Fetching pseudo Huber loss metric by name<6> Fetching the actual pseudo Huber loss value<7> Fetching R squared metric by name<8> Fetching the actual R squared value
 |