cardinality-aggregation.asciidoc 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. [[search-aggregations-metrics-cardinality-aggregation]]
  2. === Cardinality Aggregation
  3. A `single-value` metrics aggregation that calculates an approximate count of
  4. distinct values. Values can be extracted either from specific fields in the
  5. document or generated by a script.
  6. Assume you are indexing store sales and would like to count the unique number of sold products that match a query:
  7. [source,console]
  8. --------------------------------------------------
  9. POST /sales/_search?size=0
  10. {
  11. "aggs": {
  12. "type_count": {
  13. "cardinality": {
  14. "field": "type"
  15. }
  16. }
  17. }
  18. }
  19. --------------------------------------------------
  20. // TEST[setup:sales]
  21. Response:
  22. [source,console-result]
  23. --------------------------------------------------
  24. {
  25. ...
  26. "aggregations": {
  27. "type_count": {
  28. "value": 3
  29. }
  30. }
  31. }
  32. --------------------------------------------------
  33. // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
  34. ==== Precision control
  35. This aggregation also supports the `precision_threshold` option:
  36. [source,console]
  37. --------------------------------------------------
  38. POST /sales/_search?size=0
  39. {
  40. "aggs": {
  41. "type_count": {
  42. "cardinality": {
  43. "field": "type",
  44. "precision_threshold": 100 <1>
  45. }
  46. }
  47. }
  48. }
  49. --------------------------------------------------
  50. // TEST[setup:sales]
  51. <1> The `precision_threshold` options allows to trade memory for accuracy, and
  52. defines a unique count below which counts are expected to be close to
  53. accurate. Above this value, counts might become a bit more fuzzy. The maximum
  54. supported value is 40000, thresholds above this number will have the same
  55. effect as a threshold of 40000. The default value is +3000+.
  56. ==== Counts are approximate
  57. Computing exact counts requires loading values into a hash set and returning its
  58. size. This doesn't scale when working on high-cardinality sets and/or large
  59. values as the required memory usage and the need to communicate those
  60. per-shard sets between nodes would utilize too many resources of the cluster.
  61. This `cardinality` aggregation is based on the
  62. http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/40671.pdf[HyperLogLog++]
  63. algorithm, which counts based on the hashes of the values with some interesting
  64. properties:
  65. * configurable precision, which decides on how to trade memory for accuracy,
  66. * excellent accuracy on low-cardinality sets,
  67. * fixed memory usage: no matter if there are tens or billions of unique values,
  68. memory usage only depends on the configured precision.
  69. For a precision threshold of `c`, the implementation that we are using requires
  70. about `c * 8` bytes.
  71. The following chart shows how the error varies before and after the threshold:
  72. ////
  73. To generate this chart use this gnuplot script:
  74. [source,gnuplot]
  75. -------
  76. #!/usr/bin/gnuplot
  77. reset
  78. set terminal png size 1000,400
  79. set xlabel "Actual cardinality"
  80. set logscale x
  81. set ylabel "Relative error (%)"
  82. set yrange [0:8]
  83. set title "Cardinality error"
  84. set grid
  85. set style data lines
  86. plot "test.dat" using 1:2 title "threshold=100", \
  87. "" using 1:3 title "threshold=1000", \
  88. "" using 1:4 title "threshold=10000"
  89. #
  90. -------
  91. and generate data in a 'test.dat' file using the below Java code:
  92. [source,java]
  93. -------
  94. private static double error(HyperLogLogPlusPlus h, long expected) {
  95. double actual = h.cardinality(0);
  96. return Math.abs(expected - actual) / expected;
  97. }
  98. public static void main(String[] args) {
  99. HyperLogLogPlusPlus h100 = new HyperLogLogPlusPlus(precisionFromThreshold(100), BigArrays.NON_RECYCLING_INSTANCE, 1);
  100. HyperLogLogPlusPlus h1000 = new HyperLogLogPlusPlus(precisionFromThreshold(1000), BigArrays.NON_RECYCLING_INSTANCE, 1);
  101. HyperLogLogPlusPlus h10000 = new HyperLogLogPlusPlus(precisionFromThreshold(10000), BigArrays.NON_RECYCLING_INSTANCE, 1);
  102. int next = 100;
  103. int step = 10;
  104. for (int i = 1; i <= 10000000; ++i) {
  105. long h = BitMixer.mix64(i);
  106. h100.collect(0, h);
  107. h1000.collect(0, h);
  108. h10000.collect(0, h);
  109. if (i == next) {
  110. System.out.println(i + " " + error(h100, i)*100 + " " + error(h1000, i)*100 + " " + error(h10000, i)*100);
  111. next += step;
  112. if (next >= 100 * step) {
  113. step *= 10;
  114. }
  115. }
  116. }
  117. }
  118. -------
  119. ////
  120. image:images/cardinality_error.png[]
  121. For all 3 thresholds, counts have been accurate up to the configured threshold.
  122. Although not guaranteed, this is likely to be the case. Accuracy in practice depends
  123. on the dataset in question. In general, most datasets show consistently good
  124. accuracy. Also note that even with a threshold as low as 100, the error
  125. remains very low (1-6% as seen in the above graph) even when counting millions of items.
  126. The HyperLogLog++ algorithm depends on the leading zeros of hashed
  127. values, the exact distributions of hashes in a dataset can affect the
  128. accuracy of the cardinality.
  129. Please also note that even with a threshold as low as 100, the error remains
  130. very low, even when counting millions of items.
  131. ==== Pre-computed hashes
  132. On string fields that have a high cardinality, it might be faster to store the
  133. hash of your field values in your index and then run the cardinality aggregation
  134. on this field. This can either be done by providing hash values from client-side
  135. or by letting Elasticsearch compute hash values for you by using the
  136. {plugins}/mapper-murmur3.html[`mapper-murmur3`] plugin.
  137. NOTE: Pre-computing hashes is usually only useful on very large and/or
  138. high-cardinality fields as it saves CPU and memory. However, on numeric
  139. fields, hashing is very fast and storing the original values requires as much
  140. or less memory than storing the hashes. This is also true on low-cardinality
  141. string fields, especially given that those have an optimization in order to
  142. make sure that hashes are computed at most once per unique value per segment.
  143. ==== Script
  144. The `cardinality` metric supports scripting, with a noticeable performance hit
  145. however since hashes need to be computed on the fly.
  146. [source,console]
  147. --------------------------------------------------
  148. POST /sales/_search?size=0
  149. {
  150. "aggs": {
  151. "type_promoted_count": {
  152. "cardinality": {
  153. "script": {
  154. "lang": "painless",
  155. "source": "doc['type'].value + ' ' + doc['promoted'].value"
  156. }
  157. }
  158. }
  159. }
  160. }
  161. --------------------------------------------------
  162. // TEST[setup:sales]
  163. This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:
  164. [source,console]
  165. --------------------------------------------------
  166. POST /sales/_search?size=0
  167. {
  168. "aggs": {
  169. "type_promoted_count": {
  170. "cardinality": {
  171. "script": {
  172. "id": "my_script",
  173. "params": {
  174. "type_field": "type",
  175. "promoted_field": "promoted"
  176. }
  177. }
  178. }
  179. }
  180. }
  181. }
  182. --------------------------------------------------
  183. // TEST[skip:no script]
  184. ==== Missing value
  185. The `missing` parameter defines how documents that are missing a value should be treated.
  186. By default they will be ignored but it is also possible to treat them as if they
  187. had a value.
  188. [source,console]
  189. --------------------------------------------------
  190. POST /sales/_search?size=0
  191. {
  192. "aggs": {
  193. "tag_cardinality": {
  194. "cardinality": {
  195. "field": "tag",
  196. "missing": "N/A" <1>
  197. }
  198. }
  199. }
  200. }
  201. --------------------------------------------------
  202. // TEST[setup:sales]
  203. <1> Documents without a value in the `tag` field will fall into the same bucket as documents that have the value `N/A`.