123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- [[search-aggregations-metrics-sum-aggregation]]
- === Sum Aggregation
- A `single-value` metrics aggregation that sums up numeric values that are extracted from the aggregated documents.
- These values can be extracted either from specific numeric or <<histogram,histogram>> fields in the documents,
- or be generated by a provided script.
- Assuming the data consists of documents representing sales records we can sum
- the sale price of all hats with:
- [source,console]
- --------------------------------------------------
- POST /sales/_search?size=0
- {
- "query": {
- "constant_score": {
- "filter": {
- "match": { "type": "hat" }
- }
- }
- },
- "aggs": {
- "hat_prices": { "sum": { "field": "price" } }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- Resulting in:
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "hat_prices": {
- "value": 450.0
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- The name of the aggregation (`hat_prices` above) also serves as the key by which the aggregation result can be retrieved from the returned response.
- ==== Script
- We could also use a script to fetch the sales price:
- [source,console]
- --------------------------------------------------
- POST /sales/_search?size=0
- {
- "query": {
- "constant_score": {
- "filter": {
- "match": { "type": "hat" }
- }
- }
- },
- "aggs": {
- "hat_prices": {
- "sum": {
- "script": {
- "source": "doc.price.value"
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- This will interpret the `script` parameter as an `inline` script with the `painless` script language and no script parameters. To use a stored script use the following syntax:
- [source,console]
- --------------------------------------------------
- POST /sales/_search?size=0
- {
- "query": {
- "constant_score": {
- "filter": {
- "match": { "type": "hat" }
- }
- }
- },
- "aggs": {
- "hat_prices": {
- "sum": {
- "script": {
- "id": "my_script",
- "params": {
- "field": "price"
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales,stored_example_script]
- ===== Value Script
- It is also possible to access the field value from the script using `_value`.
- For example, this will sum the square of the prices for all hats:
- [source,console]
- --------------------------------------------------
- POST /sales/_search?size=0
- {
- "query": {
- "constant_score": {
- "filter": {
- "match": { "type": "hat" }
- }
- }
- },
- "aggs": {
- "square_hats": {
- "sum": {
- "field": "price",
- "script": {
- "source": "_value * _value"
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- ==== Missing value
- The `missing` parameter defines how documents that are missing a value should
- be treated. By default documents missing the value will be ignored but it is
- also possible to treat them as if they had a value. For example, this treats
- all hat sales without a price as being `100`.
- [source,console]
- --------------------------------------------------
- POST /sales/_search?size=0
- {
- "query": {
- "constant_score": {
- "filter": {
- "match": { "type": "hat" }
- }
- }
- },
- "aggs": {
- "hat_prices": {
- "sum": {
- "field": "price",
- "missing": 100 <1>
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- [[search-aggregations-metrics-sum-aggregation-histogram-fields]]
- ==== Histogram fields
- When sum is computed on <<histogram,histogram fields>>, the result of the aggregation is the sum of all elements in the `values`
- array multiplied by the number in the same position in the `counts` array.
- For example, for the following index that stores pre-aggregated histograms with latency metrics for different networks:
- [source,console]
- --------------------------------------------------
- PUT metrics_index/_doc/1
- {
- "network.name" : "net-1",
- "latency_histo" : {
- "values" : [0.1, 0.2, 0.3, 0.4, 0.5], <1>
- "counts" : [3, 7, 23, 12, 6] <2>
- }
- }
- PUT metrics_index/_doc/2
- {
- "network.name" : "net-2",
- "latency_histo" : {
- "values" : [0.1, 0.2, 0.3, 0.4, 0.5], <1>
- "counts" : [8, 17, 8, 7, 6] <2>
- }
- }
- POST /metrics_index/_search?size=0
- {
- "aggs" : {
- "total_latency" : { "sum" : { "field" : "latency_histo" } }
- }
- }
- --------------------------------------------------
- For each histogram field the `sum` aggregation will multiply each number in the `values` array <1> multiplied by its associated count
- in the `counts` array <2>. Eventually, it will add all values for all histograms and return the following result:
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "total_latency": {
- "value": 28.8
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[skip:test not setup]
|