123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- [role="xpack"]
- [testenv="basic"]
- [[search-aggregations-metrics-rate-aggregation]]
- === Rate aggregation
- ++++
- <titleabbrev>Rate</titleabbrev>
- ++++
- A `rate` metrics aggregation can be used only inside a `date_histogram` and calculates a rate of documents or a field in each
- `date_histogram` bucket. The field values can be generated by a provided script or extracted from specific numeric or
- <<histogram,histogram fields>> in the documents.
- ==== Syntax
- A `rate` aggregation looks like this in isolation:
- [source,js]
- --------------------------------------------------
- {
- "rate": {
- "unit": "month",
- "field": "requests"
- }
- }
- --------------------------------------------------
- // NOTCONSOLE
- The following request will group all sales records into monthly bucket and than convert the number of sales transaction in each bucket
- into per annual sales rate.
- [source,console]
- --------------------------------------------------
- GET sales/_search
- {
- "size": 0,
- "aggs": {
- "by_date": {
- "date_histogram": {
- "field": "date",
- "calendar_interval": "month" <1>
- },
- "aggs": {
- "my_rate": {
- "rate": {
- "unit": "year" <2>
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- <1> Histogram is grouped by month.
- <2> But the rate is converted into annual rate.
- The response will return the annual rate of transaction in each bucket. Since there are 12 months per year, the annual rate will
- be automatically calculated by multiplying monthly rate by 12.
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations" : {
- "by_date" : {
- "buckets" : [
- {
- "key_as_string" : "2015/01/01 00:00:00",
- "key" : 1420070400000,
- "doc_count" : 3,
- "my_rate" : {
- "value" : 36.0
- }
- },
- {
- "key_as_string" : "2015/02/01 00:00:00",
- "key" : 1422748800000,
- "doc_count" : 2,
- "my_rate" : {
- "value" : 24.0
- }
- },
- {
- "key_as_string" : "2015/03/01 00:00:00",
- "key" : 1425168000000,
- "doc_count" : 2,
- "my_rate" : {
- "value" : 24.0
- }
- }
- ]
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- Instead of counting the number of documents, it is also possible to calculate a sum of all values of the fields in the documents in each
- bucket or the number of values in each bucket. The following request will group all sales records into monthly bucket and than calculate
- the total monthly sales and convert them into average daily sales.
- [source,console]
- --------------------------------------------------
- GET sales/_search
- {
- "size": 0,
- "aggs": {
- "by_date": {
- "date_histogram": {
- "field": "date",
- "calendar_interval": "month" <1>
- },
- "aggs": {
- "avg_price": {
- "rate": {
- "field": "price", <2>
- "unit": "day" <3>
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- <1> Histogram is grouped by month.
- <2> Calculate sum of all sale prices
- <3> Convert to average daily sales
- The response will contain the average daily sale prices for each month.
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations" : {
- "by_date" : {
- "buckets" : [
- {
- "key_as_string" : "2015/01/01 00:00:00",
- "key" : 1420070400000,
- "doc_count" : 3,
- "avg_price" : {
- "value" : 17.741935483870968
- }
- },
- {
- "key_as_string" : "2015/02/01 00:00:00",
- "key" : 1422748800000,
- "doc_count" : 2,
- "avg_price" : {
- "value" : 2.142857142857143
- }
- },
- {
- "key_as_string" : "2015/03/01 00:00:00",
- "key" : 1425168000000,
- "doc_count" : 2,
- "avg_price" : {
- "value" : 12.096774193548388
- }
- }
- ]
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- By adding the `mode` parameter with the value `value_count`, we can change the calculation from `sum` to the number of values of the field:
- [source,console]
- --------------------------------------------------
- GET sales/_search
- {
- "size": 0,
- "aggs": {
- "by_date": {
- "date_histogram": {
- "field": "date",
- "calendar_interval": "month" <1>
- },
- "aggs": {
- "avg_number_of_sales_per_year": {
- "rate": {
- "field": "price", <2>
- "unit": "year", <3>
- "mode": "value_count" <4>
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- <1> Histogram is grouped by month.
- <2> Calculate number of of all sale prices
- <3> Convert to annual counts
- <4> Changing the mode to value count
- The response will contain the average daily sale prices for each month.
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations" : {
- "by_date" : {
- "buckets" : [
- {
- "key_as_string" : "2015/01/01 00:00:00",
- "key" : 1420070400000,
- "doc_count" : 3,
- "avg_number_of_sales_per_year" : {
- "value" : 36.0
- }
- },
- {
- "key_as_string" : "2015/02/01 00:00:00",
- "key" : 1422748800000,
- "doc_count" : 2,
- "avg_number_of_sales_per_year" : {
- "value" : 24.0
- }
- },
- {
- "key_as_string" : "2015/03/01 00:00:00",
- "key" : 1425168000000,
- "doc_count" : 2,
- "avg_number_of_sales_per_year" : {
- "value" : 24.0
- }
- }
- ]
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- By default `sum` mode is used.
- `"mode": "sum"`:: calculate the sum of all values field
- `"mode": "value_count"`:: use the number of values in the field
- The `mode` parameter can only be used with fields and scripts.
- ==== Relationship between bucket sizes and rate
- The `rate` aggregation supports all rate that can be used <<calendar_intervals,calendar_intervals parameter>> of `date_histogram`
- aggregation. The specified rate should compatible with the `date_histogram` aggregation interval, i.e. it should be possible to
- convert the bucket size into the rate. By default the interval of the `date_histogram` is used.
- `"rate": "second"`:: compatible with all intervals
- `"rate": "minute"`:: compatible with all intervals
- `"rate": "hour"`:: compatible with all intervals
- `"rate": "day"`:: compatible with all intervals
- `"rate": "week"`:: compatible with all intervals
- `"rate": "month"`:: compatible with only with `month`, `quarter` and `year` calendar intervals
- `"rate": "quarter"`:: compatible with only with `month`, `quarter` and `year` calendar intervals
- `"rate": "year"`:: compatible with only with `month`, `quarter` and `year` calendar intervals
- ==== Script
- The `rate` aggregation also supports scripting. For example, if we need to adjust out prices before calculating rates, we could use
- a script to recalculate them on-the-fly:
- [source,console]
- --------------------------------------------------
- GET sales/_search
- {
- "size": 0,
- "aggs": {
- "by_date": {
- "date_histogram": {
- "field": "date",
- "calendar_interval": "month"
- },
- "aggs": {
- "avg_price": {
- "rate": {
- "script": { <1>
- "lang": "painless",
- "source": "doc['price'].value * params.adjustment",
- "params": {
- "adjustment": 0.9 <2>
- }
- }
- }
- }
- }
- }
- }
- }
- --------------------------------------------------
- // TEST[setup:sales]
- <1> The `field` parameter is replaced with a `script` parameter, which uses the
- script to generate values which percentiles are calculated on.
- <2> Scripting supports parameterized input just like any other script.
- [source,console-result]
- --------------------------------------------------
- {
- ...
- "aggregations" : {
- "by_date" : {
- "buckets" : [
- {
- "key_as_string" : "2015/01/01 00:00:00",
- "key" : 1420070400000,
- "doc_count" : 3,
- "avg_price" : {
- "value" : 495.0
- }
- },
- {
- "key_as_string" : "2015/02/01 00:00:00",
- "key" : 1422748800000,
- "doc_count" : 2,
- "avg_price" : {
- "value" : 54.0
- }
- },
- {
- "key_as_string" : "2015/03/01 00:00:00",
- "key" : 1425168000000,
- "doc_count" : 2,
- "avg_price" : {
- "value" : 337.5
- }
- }
- ]
- }
- }
- }
- --------------------------------------------------
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
|