123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- [[search-aggregations-metrics-percentile-rank-aggregation]]
- === Percentile Ranks Aggregation
- A `multi-value` metrics aggregation that calculates one or more percentile ranks
- over numeric values extracted from the aggregated documents. These values
- can be extracted either from specific numeric fields in the documents, or
- be generated by a provided script.
- [NOTE]
- ==================================================
- Please see <<search-aggregations-metrics-percentile-aggregation-approximation>>
- and <<search-aggregations-metrics-percentile-aggregation-compression>> for advice
- regarding approximation and memory use of the percentile ranks aggregation
- ==================================================
- Percentile rank show the percentage of observed values which are below certain
- value. For example, if a value is greater than or equal to 95% of the observed values
- it is said to be at the 95th percentile rank.
- Assume your data consists of website load times. You may have a service agreement that
- 95% of page loads completely within 15ms and 99% of page loads complete within 30ms.
- Let's look at a range of percentiles representing load time:
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "load_time_outlier" : {
- "percentile_ranks" : {
- "field" : "load_time", <1>
- "values" : [15, 30]
- }
- }
- }
- }
- --------------------------------------------------
- <1> The field `load_time` must be a numeric field
- The response will look like this:
- [source,js]
- --------------------------------------------------
- {
- ...
- "aggregations": {
- "load_time_outlier": {
- "values" : {
- "15": 92,
- "30": 100
- }
- }
- }
- }
- --------------------------------------------------
- From this information you can determine you are hitting the 99% load time target but not quite
- hitting the 95% load time target
- ==== Script
- The percentile rank metric supports scripting. For example, if our load times
- are in milliseconds but we want to specify values in seconds, we could use
- a script to convert them on-the-fly:
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "load_time_outlier" : {
- "percentile_ranks" : {
- "values" : [3, 5],
- "script" : "doc['load_time'].value / timeUnit", <1>
- "params" : {
- "timeUnit" : 1000 <2>
- }
- }
- }
- }
- }
- --------------------------------------------------
- <1> The `field` parameter is replaced with a `script` parameter, which uses the
- script to generate values which percentile ranks are calculated on
- <2> Scripting supports parameterized input just like any other script
- TIP: The `script` parameter expects an inline script. Use `script_id` for indexed scripts and `script_file` for scripts in the `config/scripts/` directory.
- ==== Missing value
- The `missing` parameter defines how documents that are missing a value should be treated.
- By default they will be ignored but it is also possible to treat them as if they
- had a value.
- [source,js]
- --------------------------------------------------
- {
- "aggs" : {
- "grade_ranks" : {
- "percentile_ranks" : {
- "field" : "grade",
- "missing": 10 <1>
- }
- }
- }
- }
- --------------------------------------------------
- <1> Documents without a value in the `grade` field will fall into the same bucket as documents that have the value `10`.
|