123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956 |
- [role="xpack"]
- [testenv="basic"]
- [[find-structure]]
- = Find structure API
- ++++
- <titleabbrev>Find structure</titleabbrev>
- ++++
- Finds the structure of a text file. The text file must
- contain data that is suitable to be ingested into the
- {stack}.
- [discrete]
- [[find-structure-request]]
- == {api-request-title}
- `POST _text_structure/find_structure`
- ////
- [[find-structure-prereqs]]
- == {api-prereq-title}
- //TBD
- ////
- [discrete]
- [[find-structure-desc]]
- == {api-description-title}
- This API provides a starting point for ingesting data into {es} in a format that
- is suitable for subsequent use with other {stack} functionality.
- Unlike other {es} endpoints, the data that is posted to this endpoint does not
- need to be UTF-8 encoded and in JSON format. It must, however, be text; binary
- file formats are not currently supported.
- The response from the API contains:
- * A couple of messages from the beginning of the file.
- * Statistics that reveal the most common values for all fields detected within
- the file and basic numeric statistics for numeric fields.
- * Information about the structure of the file, which is useful when you write
- ingest configurations to index the file contents.
- * Appropriate mappings for an {es} index, which you could use to ingest the file
- contents.
- All this information can be calculated by the structure finder with no guidance.
- However, you can optionally override some of the decisions about the file
- structure by specifying one or more query parameters.
- Details of the output can be seen in the <<find-structure-examples,examples>>.
- If the structure finder produces unexpected results for a particular file,
- specify the `explain` query parameter. It causes an `explanation` to appear in
- the response, which should help in determining why the returned structure was
- chosen.
- [discrete]
- [[find-structure-query-parms]]
- == {api-query-parms-title}
- `charset`::
- (Optional, string) The file's character set. It must be a character set that is
- supported by the JVM that {es} uses. For example, `UTF-8`, `UTF-16LE`,
- `windows-1252`, or `EUC-JP`. If this parameter is not specified, the structure
- finder chooses an appropriate character set.
- `column_names`::
- (Optional, string) If you have set `format` to `delimited`, you can specify the
- column names in a comma-separated list. If this parameter is not specified, the
- structure finder uses the column names from the header row of the file. If the
- file does not have a header role, columns are named "column1", "column2",
- "column3", etc.
- `delimiter`::
- (Optional, string) If you have set `format` to `delimited`, you can specify the
- character used to delimit the values in each row. Only a single character is
- supported; the delimiter cannot have multiple characters. By default, the API
- considers the following possibilities: comma, tab, semi-colon, and pipe (`|`).
- In this default scenario, all rows must have the same number of fields for the
- delimited format to be detected. If you specify a delimiter, up to 10% of the
- rows can have a different number of columns than the first row.
- `explain`::
- (Optional, Boolean) If this parameter is set to `true`, the response includes a
- field named `explanation`, which is an array of strings that indicate how the
- structure finder produced its result. The default value is `false`.
- `format`::
- (Optional, string) The high level structure of the file. Valid values are
- `ndjson`, `xml`, `delimited`, and `semi_structured_text`. By default, the API
- chooses the format. In this default scenario, all rows must have the same number
- of fields for a delimited format to be detected. If the `format` is set to
- `delimited` and the `delimiter` is not set, however, the API tolerates up to 5%
- of rows that have a different number of columns than the first row.
- `grok_pattern`::
- (Optional, string) If you have set `format` to `semi_structured_text`, you can
- specify a Grok pattern that is used to extract fields from every message in the
- file. The name of the timestamp field in the Grok pattern must match what is
- specified in the `timestamp_field` parameter. If that parameter is not
- specified, the name of the timestamp field in the Grok pattern must match
- "timestamp". If `grok_pattern` is not specified, the structure finder creates a
- Grok pattern.
- `has_header_row`::
- (Optional, Boolean) If you have set `format` to `delimited`, you can use this
- parameter to indicate whether the column names are in the first row of the file.
- If this parameter is not specified, the structure finder guesses based on the
- similarity of the first row of the file to other rows.
- `line_merge_size_limit`::
- (Optional, unsigned integer) The maximum number of characters in a message when
- lines are merged to form messages while analyzing semi-structured files. The
- default is `10000`. If you have extremely long messages you may need to increase
- this, but be aware that this may lead to very long processing times if the way
- to group lines into messages is misdetected.
- `lines_to_sample`::
- (Optional, unsigned integer) The number of lines to include in the structural
- analysis, starting from the beginning of the file. The minimum is 2; the default
- is `1000`. If the value of this parameter is greater than the number of lines in
- the file, the analysis proceeds (as long as there are at least two lines in the
- file) for all of the lines.
- +
- --
- NOTE: The number of lines and the variation of the lines affects the speed of
- the analysis. For example, if you upload a log file where the first 1000 lines
- are all variations on the same message, the analysis will find more commonality
- than would be seen with a bigger sample. If possible, however, it is more
- efficient to upload a sample file with more variety in the first 1000 lines than
- to request analysis of 100000 lines to achieve some variety.
- --
- `quote`::
- (Optional, string) If you have set `format` to `delimited`, you can specify the
- character used to quote the values in each row if they contain newlines or the
- delimiter character. Only a single character is supported. If this parameter is
- not specified, the default value is a double quote (`"`). If your delimited file
- format does not use quoting, a workaround is to set this argument to a character
- that does not appear anywhere in the sample.
- `should_trim_fields`::
- (Optional, Boolean) If you have set `format` to `delimited`, you can specify
- whether values between delimiters should have whitespace trimmed from them. If
- this parameter is not specified and the delimiter is pipe (`|`), the default
- value is `true`. Otherwise, the default value is `false`.
- `timeout`::
- (Optional, <<time-units,time units>>) Sets the maximum amount of time that the
- structure analysis make take. If the analysis is still running when the timeout
- expires then it will be aborted. The default value is 25 seconds.
- `timestamp_field`::
- (Optional, string) The name of the field that contains the primary timestamp of
- each record in the file. In particular, if the file were ingested into an index,
- this is the field that would be used to populate the `@timestamp` field.
- +
- --
- If the `format` is `semi_structured_text`, this field must match the name of the
- appropriate extraction in the `grok_pattern`. Therefore, for semi-structured
- file formats, it is best not to specify this parameter unless `grok_pattern` is
- also specified.
- For structured file formats, if you specify this parameter, the field must exist
- within the file.
- If this parameter is not specified, the structure finder makes a decision about
- which field (if any) is the primary timestamp field. For structured file
- formats, it is not compulsory to have a timestamp in the file.
- --
- `timestamp_format`::
- (Optional, string) The Java time format of the timestamp field in the file.
- +
- --
- Only a subset of Java time format letter groups are supported:
- * `a`
- * `d`
- * `dd`
- * `EEE`
- * `EEEE`
- * `H`
- * `HH`
- * `h`
- * `M`
- * `MM`
- * `MMM`
- * `MMMM`
- * `mm`
- * `ss`
- * `XX`
- * `XXX`
- * `yy`
- * `yyyy`
- * `zzz`
- Additionally `S` letter groups (fractional seconds) of length one to nine are
- supported providing they occur after `ss` and separated from the `ss` by a `.`,
- `,` or `:`. Spacing and punctuation is also permitted with the exception of `?`,
- newline and carriage return, together with literal text enclosed in single
- quotes. For example, `MM/dd HH.mm.ss,SSSSSS 'in' yyyy` is a valid override
- format.
- One valuable use case for this parameter is when the format is semi-structured
- text, there are multiple timestamp formats in the file, and you know which
- format corresponds to the primary timestamp, but you do not want to specify the
- full `grok_pattern`. Another is when the timestamp format is one that the
- structure finder does not consider by default.
- If this parameter is not specified, the structure finder chooses the best
- format from a built-in set.
- The following table provides the appropriate `timeformat` values for some example timestamps:
- |===
- | Timeformat | Presentation
- | yyyy-MM-dd HH:mm:ssZ | 2019-04-20 13:15:22+0000
- | EEE, d MMM yyyy HH:mm:ss Z | Sat, 20 Apr 2019 13:15:22 +0000
- | dd.MM.yy HH:mm:ss.SSS | 20.04.19 13:15:22.285
- |===
- See
- https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html[the Java date/time format documentation]
- for more information about date and time format syntax.
- --
- [discrete]
- [[find-structure-request-body]]
- == {api-request-body-title}
- The text file that you want to analyze. It must contain data that is suitable to
- be ingested into {es}. It does not need to be in JSON format and it does not
- need to be UTF-8 encoded. The size is limited to the {es} HTTP receive buffer
- size, which defaults to 100 Mb.
- [discrete]
- [[find-structure-examples]]
- == {api-examples-title}
- [discrete]
- [[find-structure-example-nld-json]]
- === Ingesting newline-delimited JSON
- Suppose you have a newline-delimited JSON file that contains information about
- some books. You can send the contents to the `find_structure` endpoint:
- [source,console]
- ----
- POST _text_structure/find_structure
- {"name": "Leviathan Wakes", "author": "James S.A. Corey", "release_date": "2011-06-02", "page_count": 561}
- {"name": "Hyperion", "author": "Dan Simmons", "release_date": "1989-05-26", "page_count": 482}
- {"name": "Dune", "author": "Frank Herbert", "release_date": "1965-06-01", "page_count": 604}
- {"name": "Dune Messiah", "author": "Frank Herbert", "release_date": "1969-10-15", "page_count": 331}
- {"name": "Children of Dune", "author": "Frank Herbert", "release_date": "1976-04-21", "page_count": 408}
- {"name": "God Emperor of Dune", "author": "Frank Herbert", "release_date": "1981-05-28", "page_count": 454}
- {"name": "Consider Phlebas", "author": "Iain M. Banks", "release_date": "1987-04-23", "page_count": 471}
- {"name": "Pandora's Star", "author": "Peter F. Hamilton", "release_date": "2004-03-02", "page_count": 768}
- {"name": "Revelation Space", "author": "Alastair Reynolds", "release_date": "2000-03-15", "page_count": 585}
- {"name": "A Fire Upon the Deep", "author": "Vernor Vinge", "release_date": "1992-06-01", "page_count": 613}
- {"name": "Ender's Game", "author": "Orson Scott Card", "release_date": "1985-06-01", "page_count": 324}
- {"name": "1984", "author": "George Orwell", "release_date": "1985-06-01", "page_count": 328}
- {"name": "Fahrenheit 451", "author": "Ray Bradbury", "release_date": "1953-10-15", "page_count": 227}
- {"name": "Brave New World", "author": "Aldous Huxley", "release_date": "1932-06-01", "page_count": 268}
- {"name": "Foundation", "author": "Isaac Asimov", "release_date": "1951-06-01", "page_count": 224}
- {"name": "The Giver", "author": "Lois Lowry", "release_date": "1993-04-26", "page_count": 208}
- {"name": "Slaughterhouse-Five", "author": "Kurt Vonnegut", "release_date": "1969-06-01", "page_count": 275}
- {"name": "The Hitchhiker's Guide to the Galaxy", "author": "Douglas Adams", "release_date": "1979-10-12", "page_count": 180}
- {"name": "Snow Crash", "author": "Neal Stephenson", "release_date": "1992-06-01", "page_count": 470}
- {"name": "Neuromancer", "author": "William Gibson", "release_date": "1984-07-01", "page_count": 271}
- {"name": "The Handmaid's Tale", "author": "Margaret Atwood", "release_date": "1985-06-01", "page_count": 311}
- {"name": "Starship Troopers", "author": "Robert A. Heinlein", "release_date": "1959-12-01", "page_count": 335}
- {"name": "The Left Hand of Darkness", "author": "Ursula K. Le Guin", "release_date": "1969-06-01", "page_count": 304}
- {"name": "The Moon is a Harsh Mistress", "author": "Robert A. Heinlein", "release_date": "1966-04-01", "page_count": 288}
- ----
- // TEST
- If the request does not encounter errors, you receive the following result:
- [source,console-result]
- ----
- {
- "num_lines_analyzed" : 24, <1>
- "num_messages_analyzed" : 24, <2>
- "sample_start" : "{\"name\": \"Leviathan Wakes\", \"author\": \"James S.A. Corey\", \"release_date\": \"2011-06-02\", \"page_count\": 561}\n{\"name\": \"Hyperion\", \"author\": \"Dan Simmons\", \"release_date\": \"1989-05-26\", \"page_count\": 482}\n", <3>
- "charset" : "UTF-8", <4>
- "has_byte_order_marker" : false, <5>
- "format" : "ndjson", <6>
- "timestamp_field" : "release_date", <7>
- "joda_timestamp_formats" : [ <8>
- "ISO8601"
- ],
- "java_timestamp_formats" : [ <9>
- "ISO8601"
- ],
- "need_client_timezone" : true, <10>
- "mappings" : { <11>
- "properties" : {
- "@timestamp" : {
- "type" : "date"
- },
- "author" : {
- "type" : "keyword"
- },
- "name" : {
- "type" : "keyword"
- },
- "page_count" : {
- "type" : "long"
- },
- "release_date" : {
- "type" : "date",
- "format" : "iso8601"
- }
- }
- },
- "ingest_pipeline" : {
- "description" : "Ingest pipeline created by file structure finder",
- "processors" : [
- {
- "date" : {
- "field" : "release_date",
- "timezone" : "{{ event.timezone }}",
- "formats" : [
- "ISO8601"
- ]
- }
- }
- ]
- },
- "field_stats" : { <12>
- "author" : {
- "count" : 24,
- "cardinality" : 20,
- "top_hits" : [
- {
- "value" : "Frank Herbert",
- "count" : 4
- },
- {
- "value" : "Robert A. Heinlein",
- "count" : 2
- },
- {
- "value" : "Alastair Reynolds",
- "count" : 1
- },
- {
- "value" : "Aldous Huxley",
- "count" : 1
- },
- {
- "value" : "Dan Simmons",
- "count" : 1
- },
- {
- "value" : "Douglas Adams",
- "count" : 1
- },
- {
- "value" : "George Orwell",
- "count" : 1
- },
- {
- "value" : "Iain M. Banks",
- "count" : 1
- },
- {
- "value" : "Isaac Asimov",
- "count" : 1
- },
- {
- "value" : "James S.A. Corey",
- "count" : 1
- }
- ]
- },
- "name" : {
- "count" : 24,
- "cardinality" : 24,
- "top_hits" : [
- {
- "value" : "1984",
- "count" : 1
- },
- {
- "value" : "A Fire Upon the Deep",
- "count" : 1
- },
- {
- "value" : "Brave New World",
- "count" : 1
- },
- {
- "value" : "Children of Dune",
- "count" : 1
- },
- {
- "value" : "Consider Phlebas",
- "count" : 1
- },
- {
- "value" : "Dune",
- "count" : 1
- },
- {
- "value" : "Dune Messiah",
- "count" : 1
- },
- {
- "value" : "Ender's Game",
- "count" : 1
- },
- {
- "value" : "Fahrenheit 451",
- "count" : 1
- },
- {
- "value" : "Foundation",
- "count" : 1
- }
- ]
- },
- "page_count" : {
- "count" : 24,
- "cardinality" : 24,
- "min_value" : 180,
- "max_value" : 768,
- "mean_value" : 387.0833333333333,
- "median_value" : 329.5,
- "top_hits" : [
- {
- "value" : 180,
- "count" : 1
- },
- {
- "value" : 208,
- "count" : 1
- },
- {
- "value" : 224,
- "count" : 1
- },
- {
- "value" : 227,
- "count" : 1
- },
- {
- "value" : 268,
- "count" : 1
- },
- {
- "value" : 271,
- "count" : 1
- },
- {
- "value" : 275,
- "count" : 1
- },
- {
- "value" : 288,
- "count" : 1
- },
- {
- "value" : 304,
- "count" : 1
- },
- {
- "value" : 311,
- "count" : 1
- }
- ]
- },
- "release_date" : {
- "count" : 24,
- "cardinality" : 20,
- "earliest" : "1932-06-01",
- "latest" : "2011-06-02",
- "top_hits" : [
- {
- "value" : "1985-06-01",
- "count" : 3
- },
- {
- "value" : "1969-06-01",
- "count" : 2
- },
- {
- "value" : "1992-06-01",
- "count" : 2
- },
- {
- "value" : "1932-06-01",
- "count" : 1
- },
- {
- "value" : "1951-06-01",
- "count" : 1
- },
- {
- "value" : "1953-10-15",
- "count" : 1
- },
- {
- "value" : "1959-12-01",
- "count" : 1
- },
- {
- "value" : "1965-06-01",
- "count" : 1
- },
- {
- "value" : "1966-04-01",
- "count" : 1
- },
- {
- "value" : "1969-10-15",
- "count" : 1
- }
- ]
- }
- }
- }
- ----
- // TESTRESPONSE[s/"sample_start" : ".*",/"sample_start" : "$body.sample_start",/]
- // The substitution is because the "file" is pre-processed by the test harness,
- // so the fields may get reordered in the JSON the endpoint sees
- <1> `num_lines_analyzed` indicates how many lines of the file were analyzed.
- <2> `num_messages_analyzed` indicates how many distinct messages the lines
- contained. For NDJSON, this value is the same as `num_lines_analyzed`. For other
- file formats, messages can span several lines.
- <3> `sample_start` reproduces the first two messages in the file verbatim. This
- may help diagnose parse errors or accidental uploads of the wrong file.
- <4> `charset` indicates the character encoding used to parse the file.
- <5> For UTF character encodings, `has_byte_order_marker` indicates whether the
- file begins with a byte order marker.
- <6> `format` is one of `ndjson`, `xml`, `delimited` or `semi_structured_text`.
- <7> The `timestamp_field` names the field considered most likely to be the
- primary timestamp of each document.
- <8> `joda_timestamp_formats` are used to tell {ls} how to parse timestamps.
- <9> `java_timestamp_formats` are the Java time formats recognized in the time
- fields. {es} mappings and ingest pipelines use this format.
- <10> If a timestamp format is detected that does not include a timezone,
- `need_client_timezone` will be `true`. The server that parses the file must
- therefore be told the correct timezone by the client.
- <11> `mappings` contains some suitable mappings for an index into which the data
- could be ingested. In this case, the `release_date` field has been given a
- `keyword` type as it is not considered specific enough to convert to the `date`
- type.
- <12> `field_stats` contains the most common values of each field, plus basic
- numeric statistics for the numeric `page_count` field. This information may
- provide clues that the data needs to be cleaned or transformed prior to use by
- other {stack} functionality.
- [discrete]
- [[find-structure-example-nyc]]
- === Finding the structure of NYC yellow cab example data
- The next example shows how it's possible to find the structure of some New York
- City yellow cab trip data. The first `curl` command downloads the data, the
- first 20000 lines of which are then piped into the `find_structure`
- endpoint. The `lines_to_sample` query parameter of the endpoint is set to 20000
- to match what is specified in the `head` command.
- [source,js]
- ----
- curl -s "s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2018-06.csv" | head -20000 | curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty&lines_to_sample=20000" -T -
- ----
- // NOTCONSOLE
- // Not converting to console because this shows how curl can be used
- --
- NOTE: The `Content-Type: application/json` header must be set even though in
- this case the data is not JSON. (Alternatively the `Content-Type` can be set
- to any other supported by {es}, but it must be set.)
- --
- If the request does not encounter errors, you receive the following result:
- [source,js]
- ----
- {
- "num_lines_analyzed" : 20000,
- "num_messages_analyzed" : 19998, <1>
- "sample_start" : "VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodeID,store_and_fwd_flag,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_surcharge,total_amount\n\n1,2018-06-01 00:15:40,2018-06-01 00:16:46,1,.00,1,N,145,145,2,3,0.5,0.5,0,0,0.3,4.3\n",
- "charset" : "UTF-8",
- "has_byte_order_marker" : false,
- "format" : "delimited", <2>
- "multiline_start_pattern" : "^.*?,\"?\\d{4}-\\d{2}-\\d{2}[T ]\\d{2}:\\d{2}",
- "exclude_lines_pattern" : "^\"?VendorID\"?,\"?tpep_pickup_datetime\"?,\"?tpep_dropoff_datetime\"?,\"?passenger_count\"?,\"?trip_distance\"?,\"?RatecodeID\"?,\"?store_and_fwd_flag\"?,\"?PULocationID\"?,\"?DOLocationID\"?,\"?payment_type\"?,\"?fare_amount\"?,\"?extra\"?,\"?mta_tax\"?,\"?tip_amount\"?,\"?tolls_amount\"?,\"?improvement_surcharge\"?,\"?total_amount\"?",
- "column_names" : [ <3>
- "VendorID",
- "tpep_pickup_datetime",
- "tpep_dropoff_datetime",
- "passenger_count",
- "trip_distance",
- "RatecodeID",
- "store_and_fwd_flag",
- "PULocationID",
- "DOLocationID",
- "payment_type",
- "fare_amount",
- "extra",
- "mta_tax",
- "tip_amount",
- "tolls_amount",
- "improvement_surcharge",
- "total_amount"
- ],
- "has_header_row" : true, <4>
- "delimiter" : ",", <5>
- "quote" : "\"", <6>
- "timestamp_field" : "tpep_pickup_datetime", <7>
- "joda_timestamp_formats" : [ <8>
- "YYYY-MM-dd HH:mm:ss"
- ],
- "java_timestamp_formats" : [ <9>
- "yyyy-MM-dd HH:mm:ss"
- ],
- "need_client_timezone" : true, <10>
- "mappings" : {
- "properties" : {
- "@timestamp" : {
- "type" : "date"
- },
- "DOLocationID" : {
- "type" : "long"
- },
- "PULocationID" : {
- "type" : "long"
- },
- "RatecodeID" : {
- "type" : "long"
- },
- "VendorID" : {
- "type" : "long"
- },
- "extra" : {
- "type" : "double"
- },
- "fare_amount" : {
- "type" : "double"
- },
- "improvement_surcharge" : {
- "type" : "double"
- },
- "mta_tax" : {
- "type" : "double"
- },
- "passenger_count" : {
- "type" : "long"
- },
- "payment_type" : {
- "type" : "long"
- },
- "store_and_fwd_flag" : {
- "type" : "keyword"
- },
- "tip_amount" : {
- "type" : "double"
- },
- "tolls_amount" : {
- "type" : "double"
- },
- "total_amount" : {
- "type" : "double"
- },
- "tpep_dropoff_datetime" : {
- "type" : "date",
- "format" : "yyyy-MM-dd HH:mm:ss"
- },
- "tpep_pickup_datetime" : {
- "type" : "date",
- "format" : "yyyy-MM-dd HH:mm:ss"
- },
- "trip_distance" : {
- "type" : "double"
- }
- }
- },
- "ingest_pipeline" : {
- "description" : "Ingest pipeline created by file structure finder",
- "processors" : [
- {
- "csv" : {
- "field" : "message",
- "target_fields" : [
- "VendorID",
- "tpep_pickup_datetime",
- "tpep_dropoff_datetime",
- "passenger_count",
- "trip_distance",
- "RatecodeID",
- "store_and_fwd_flag",
- "PULocationID",
- "DOLocationID",
- "payment_type",
- "fare_amount",
- "extra",
- "mta_tax",
- "tip_amount",
- "tolls_amount",
- "improvement_surcharge",
- "total_amount"
- ]
- }
- },
- {
- "date" : {
- "field" : "tpep_pickup_datetime",
- "timezone" : "{{ event.timezone }}",
- "formats" : [
- "yyyy-MM-dd HH:mm:ss"
- ]
- }
- },
- {
- "convert" : {
- "field" : "DOLocationID",
- "type" : "long"
- }
- },
- {
- "convert" : {
- "field" : "PULocationID",
- "type" : "long"
- }
- },
- {
- "convert" : {
- "field" : "RatecodeID",
- "type" : "long"
- }
- },
- {
- "convert" : {
- "field" : "VendorID",
- "type" : "long"
- }
- },
- {
- "convert" : {
- "field" : "extra",
- "type" : "double"
- }
- },
- {
- "convert" : {
- "field" : "fare_amount",
- "type" : "double"
- }
- },
- {
- "convert" : {
- "field" : "improvement_surcharge",
- "type" : "double"
- }
- },
- {
- "convert" : {
- "field" : "mta_tax",
- "type" : "double"
- }
- },
- {
- "convert" : {
- "field" : "passenger_count",
- "type" : "long"
- }
- },
- {
- "convert" : {
- "field" : "payment_type",
- "type" : "long"
- }
- },
- {
- "convert" : {
- "field" : "tip_amount",
- "type" : "double"
- }
- },
- {
- "convert" : {
- "field" : "tolls_amount",
- "type" : "double"
- }
- },
- {
- "convert" : {
- "field" : "total_amount",
- "type" : "double"
- }
- },
- {
- "convert" : {
- "field" : "trip_distance",
- "type" : "double"
- }
- },
- {
- "remove" : {
- "field" : "message"
- }
- }
- ]
- },
- "field_stats" : {
- "DOLocationID" : {
- "count" : 19998,
- "cardinality" : 240,
- "min_value" : 1,
- "max_value" : 265,
- "mean_value" : 150.26532653265312,
- "median_value" : 148,
- "top_hits" : [
- {
- "value" : 79,
- "count" : 760
- },
- {
- "value" : 48,
- "count" : 683
- },
- {
- "value" : 68,
- "count" : 529
- },
- {
- "value" : 170,
- "count" : 506
- },
- {
- "value" : 107,
- "count" : 468
- },
- {
- "value" : 249,
- "count" : 457
- },
- {
- "value" : 230,
- "count" : 441
- },
- {
- "value" : 186,
- "count" : 432
- },
- {
- "value" : 141,
- "count" : 409
- },
- {
- "value" : 263,
- "count" : 386
- }
- ]
- },
- "PULocationID" : {
- "count" : 19998,
- "cardinality" : 154,
- "min_value" : 1,
- "max_value" : 265,
- "mean_value" : 153.4042404240424,
- "median_value" : 148,
- "top_hits" : [
- {
- "value" : 79,
- "count" : 1067
- },
- {
- "value" : 230,
- "count" : 949
- },
- {
- "value" : 148,
- "count" : 940
- },
- {
- "value" : 132,
- "count" : 897
- },
- {
- "value" : 48,
- "count" : 853
- },
- {
- "value" : 161,
- "count" : 820
- },
- {
- "value" : 234,
- "count" : 750
- },
- {
- "value" : 249,
- "count" : 722
- },
- {
- "value" : 164,
- "count" : 663
- },
- {
- "value" : 114,
- "count" : 646
- }
- ]
- },
- "RatecodeID" : {
- "count" : 19998,
- "cardinality" : 5,
- "min_value" : 1,
- "max_value" : 5,
- "mean_value" : 1.0656565656565653,
- "median_value" : 1,
- "top_hits" : [
- {
- "value" : 1,
- "count" : 19311
- },
- {
- "value" : 2,
- "count" : 468
- },
- {
- "value" : 5,
- "count" : 195
- },
- {
- "value" : 4,
- "count" : 17
- },
- {
- "value" : 3,
- "count" : 7
- }
- ]
- },
- "VendorID" : {
- "count" : 19998,
- "cardinality" : 2,
- "min_value" : 1,
- "max_value" : 2,
- "mean_value" : 1.59005900590059,
- "median_value" : 2,
- "top_hits" : [
- {
- "value" : 2,
- "count" : 11800
- },
- {
- "value" : 1,
- "count" : 8198
- }
- ]
- },
- "extra" : {
- "count" : 19998,
- "cardinality" : 3,
- "min_value" : -0.5,
- "max_value" : 0.5,
- "mean_value" : 0.4815981598159816,
- "median_value" : 0.5,
- "top_hits" : [
- {
- "value" : 0.5,
- "count" : 19281
- },
- {
- "value" : 0,
- "count" : 698
- },
- {
- "value" : -0.5,
- "count" : 19
- }
- ]
- },
- "fare_amount" : {
- "count" : 19998,
- "cardinality" : 208,
- "min_value" : -100,
- "max_value" : 300,
- "mean_value" : 13.937719771977209,
- "median_value" : 9.5,
- "top_hits" : [
- {
- "value" : 6,
- "count" : 1004
- },
- {
- "value" : 6.5,
- "count" : 935
- },
- {
- "value" : 5.5,
- "count" : 909
- },
- {
- "value" : 7,
- "count" : 903
- },
- {
- "value" : 5,
- "count" : 889
- },
- {
- "value" : 7.5,
- "count" : 854
- },
- {
- "value" : 4.5,
- "count" : 802
- },
- {
- "value" : 8.5,
- "count" : 790
- },
- {
- "value" : 8,
- "count" : 789
- },
- {
- "value" : 9,
- "count" : 711
- }
- ]
- },
- "improvement_surcharge" : {
- "count" : 19998,
- "cardinality" : 3,
- "min_value" : -0.3,
- "max_value" : 0.3,
- "mean_value" : 0.29915991599159913,
- "median_value" : 0.3,
- "top_hits" : [
- {
- "value" : 0.3,
- "count" : 19964
- },
- {
- "value" : -0.3,
- "count" : 22
- },
- {
- "value" : 0,
- "count" : 12
- }
- ]
- },
- "mta_tax" : {
- "count" : 19998,
- "cardinality" : 3,
- "min_value" : -0.5,
- "max_value" : 0.5,
- "mean_value" : 0.4962246224622462,
- "median_value" : 0.5,
- "top_hits" : [
- {
- "value" : 0.5,
- "count" : 19868
- },
- {
- "value" : 0,
- "count" : 109
- },
- {
- "value" : -0.5,
- "count" : 21
- }
- ]
- },
- "passenger_count" : {
- "count" : 19998,
- "cardinality" : 7,
- "min_value" : 0,
- "max_value" : 6,
- "mean_value" : 1.6201620162016201,
- "median_value" : 1,
- "top_hits" : [
- {
- "value" : 1,
- "count" : 14219
- },
- {
- "value" : 2,
- "count" : 2886
- },
- {
- "value" : 5,
- "count" : 1047
- },
- {
- "value" : 3,
- "count" : 804
- },
- {
- "value" : 6,
- "count" : 523
- },
- {
- "value" : 4,
- "count" : 406
- },
- {
- "value" : 0,
- "count" : 113
- }
- ]
- },
- "payment_type" : {
- "count" : 19998,
- "cardinality" : 4,
- "min_value" : 1,
- "max_value" : 4,
- "mean_value" : 1.315631563156316,
- "median_value" : 1,
- "top_hits" : [
- {
- "value" : 1,
- "count" : 13936
- },
- {
- "value" : 2,
- "count" : 5857
- },
- {
- "value" : 3,
- "count" : 160
- },
- {
- "value" : 4,
- "count" : 45
- }
- ]
- },
- "store_and_fwd_flag" : {
- "count" : 19998,
- "cardinality" : 2,
- "top_hits" : [
- {
- "value" : "N",
- "count" : 19910
- },
- {
- "value" : "Y",
- "count" : 88
- }
- ]
- },
- "tip_amount" : {
- "count" : 19998,
- "cardinality" : 717,
- "min_value" : 0,
- "max_value" : 128,
- "mean_value" : 2.010959095909593,
- "median_value" : 1.45,
- "top_hits" : [
- {
- "value" : 0,
- "count" : 6917
- },
- {
- "value" : 1,
- "count" : 1178
- },
- {
- "value" : 2,
- "count" : 624
- },
- {
- "value" : 3,
- "count" : 248
- },
- {
- "value" : 1.56,
- "count" : 206
- },
- {
- "value" : 1.46,
- "count" : 205
- },
- {
- "value" : 1.76,
- "count" : 196
- },
- {
- "value" : 1.45,
- "count" : 195
- },
- {
- "value" : 1.36,
- "count" : 191
- },
- {
- "value" : 1.5,
- "count" : 187
- }
- ]
- },
- "tolls_amount" : {
- "count" : 19998,
- "cardinality" : 26,
- "min_value" : 0,
- "max_value" : 35,
- "mean_value" : 0.2729697969796978,
- "median_value" : 0,
- "top_hits" : [
- {
- "value" : 0,
- "count" : 19107
- },
- {
- "value" : 5.76,
- "count" : 791
- },
- {
- "value" : 10.5,
- "count" : 36
- },
- {
- "value" : 2.64,
- "count" : 21
- },
- {
- "value" : 11.52,
- "count" : 8
- },
- {
- "value" : 5.54,
- "count" : 4
- },
- {
- "value" : 8.5,
- "count" : 4
- },
- {
- "value" : 17.28,
- "count" : 4
- },
- {
- "value" : 2,
- "count" : 2
- },
- {
- "value" : 2.16,
- "count" : 2
- }
- ]
- },
- "total_amount" : {
- "count" : 19998,
- "cardinality" : 1267,
- "min_value" : -100.3,
- "max_value" : 389.12,
- "mean_value" : 17.499898989898995,
- "median_value" : 12.35,
- "top_hits" : [
- {
- "value" : 7.3,
- "count" : 478
- },
- {
- "value" : 8.3,
- "count" : 443
- },
- {
- "value" : 8.8,
- "count" : 420
- },
- {
- "value" : 6.8,
- "count" : 406
- },
- {
- "value" : 7.8,
- "count" : 405
- },
- {
- "value" : 6.3,
- "count" : 371
- },
- {
- "value" : 9.8,
- "count" : 368
- },
- {
- "value" : 5.8,
- "count" : 362
- },
- {
- "value" : 9.3,
- "count" : 332
- },
- {
- "value" : 10.3,
- "count" : 332
- }
- ]
- },
- "tpep_dropoff_datetime" : {
- "count" : 19998,
- "cardinality" : 9066,
- "earliest" : "2018-05-31 06:18:15",
- "latest" : "2018-06-02 02:25:44",
- "top_hits" : [
- {
- "value" : "2018-06-01 01:12:12",
- "count" : 10
- },
- {
- "value" : "2018-06-01 00:32:15",
- "count" : 9
- },
- {
- "value" : "2018-06-01 00:44:27",
- "count" : 9
- },
- {
- "value" : "2018-06-01 00:46:42",
- "count" : 9
- },
- {
- "value" : "2018-06-01 01:03:22",
- "count" : 9
- },
- {
- "value" : "2018-06-01 01:05:13",
- "count" : 9
- },
- {
- "value" : "2018-06-01 00:11:20",
- "count" : 8
- },
- {
- "value" : "2018-06-01 00:16:03",
- "count" : 8
- },
- {
- "value" : "2018-06-01 00:19:47",
- "count" : 8
- },
- {
- "value" : "2018-06-01 00:25:17",
- "count" : 8
- }
- ]
- },
- "tpep_pickup_datetime" : {
- "count" : 19998,
- "cardinality" : 8760,
- "earliest" : "2018-05-31 06:08:31",
- "latest" : "2018-06-02 01:21:21",
- "top_hits" : [
- {
- "value" : "2018-06-01 00:01:23",
- "count" : 12
- },
- {
- "value" : "2018-06-01 00:04:31",
- "count" : 10
- },
- {
- "value" : "2018-06-01 00:05:38",
- "count" : 10
- },
- {
- "value" : "2018-06-01 00:09:50",
- "count" : 10
- },
- {
- "value" : "2018-06-01 00:12:01",
- "count" : 10
- },
- {
- "value" : "2018-06-01 00:14:17",
- "count" : 10
- },
- {
- "value" : "2018-06-01 00:00:34",
- "count" : 9
- },
- {
- "value" : "2018-06-01 00:00:40",
- "count" : 9
- },
- {
- "value" : "2018-06-01 00:02:53",
- "count" : 9
- },
- {
- "value" : "2018-06-01 00:05:40",
- "count" : 9
- }
- ]
- },
- "trip_distance" : {
- "count" : 19998,
- "cardinality" : 1687,
- "min_value" : 0,
- "max_value" : 64.63,
- "mean_value" : 3.6521062106210715,
- "median_value" : 2.16,
- "top_hits" : [
- {
- "value" : 0.9,
- "count" : 335
- },
- {
- "value" : 0.8,
- "count" : 320
- },
- {
- "value" : 1.1,
- "count" : 316
- },
- {
- "value" : 0.7,
- "count" : 304
- },
- {
- "value" : 1.2,
- "count" : 303
- },
- {
- "value" : 1,
- "count" : 296
- },
- {
- "value" : 1.3,
- "count" : 280
- },
- {
- "value" : 1.5,
- "count" : 268
- },
- {
- "value" : 1.6,
- "count" : 268
- },
- {
- "value" : 0.6,
- "count" : 256
- }
- ]
- }
- }
- }
- ----
- // NOTCONSOLE
- <1> `num_messages_analyzed` is 2 lower than `num_lines_analyzed` because only
- data records count as messages. The first line contains the column names and in
- this sample the second line is blank.
- <2> Unlike the first example, in this case the `format` has been identified as
- `delimited`.
- <3> Because the `format` is `delimited`, the `column_names` field in the output
- lists the column names in the order they appear in the sample.
- <4> `has_header_row` indicates that for this sample the column names were in
- the first row of the sample. (If they hadn't been then it would have been a good
- idea to specify them in the `column_names` query parameter.)
- <5> The `delimiter` for this sample is a comma, as it's a CSV file.
- <6> The `quote` character is the default double quote. (The structure finder
- does not attempt to deduce any other quote character, so if you have a delimited
- file that's quoted with some other character you must specify it using the
- `quote` query parameter.)
- <7> The `timestamp_field` has been chosen to be `tpep_pickup_datetime`.
- `tpep_dropoff_datetime` would work just as well, but `tpep_pickup_datetime` was
- chosen because it comes first in the column order. If you prefer
- `tpep_dropoff_datetime` then force it to be chosen using the
- `timestamp_field` query parameter.
- <8> `joda_timestamp_formats` are used to tell {ls} how to parse timestamps.
- <9> `java_timestamp_formats` are the Java time formats recognized in the time
- fields. {es} mappings and ingest pipelines use this format.
- <10> The timestamp format in this sample doesn't specify a timezone, so to
- accurately convert them to UTC timestamps to store in {es} it's necessary to
- supply the timezone they relate to. `need_client_timezone` will be `false` for
- timestamp formats that include the timezone.
- [discrete]
- [[find-structure-example-timeout]]
- === Setting the timeout parameter
- If you try to analyze a lot of data then the analysis will take a long time. If
- you want to limit the amount of processing your {es} cluster performs for a
- request, use the `timeout` query parameter. The analysis will be aborted and an
- error returned when the timeout expires. For example, you can replace 20000
- lines in the previous example with 200000 and set a 1 second timeout on the
- analysis:
- [source,js]
- ----
- curl -s "s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2018-06.csv" | head -200000 | curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty&lines_to_sample=200000&timeout=1s" -T -
- ----
- // NOTCONSOLE
- // Not converting to console because this shows how curl can be used
- Unless you are using an incredibly fast computer you'll receive a timeout error:
- [source,js]
- ----
- {
- "error" : {
- "root_cause" : [
- {
- "type" : "timeout_exception",
- "reason" : "Aborting structure analysis during [delimited record parsing] as it has taken longer than the timeout of [1s]"
- }
- ],
- "type" : "timeout_exception",
- "reason" : "Aborting structure analysis during [delimited record parsing] as it has taken longer than the timeout of [1s]"
- },
- "status" : 500
- }
- ----
- // NOTCONSOLE
- --
- NOTE: If you try the example above yourself you will note that the overall
- running time of the `curl` commands is considerably longer than 1 second. This
- is because it takes a while to download 200000 lines of CSV from the internet,
- and the timeout is measured from the time this endpoint starts to process the
- data.
- --
- [discrete]
- [[find-structure-example-eslog]]
- === Analyzing {es} log files
- This is an example of analyzing an {es} log file:
- [source,js]
- ----
- curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty" -T "$ES_HOME/logs/elasticsearch.log"
- ----
- // NOTCONSOLE
- // Not converting to console because this shows how curl can be used
- If the request does not encounter errors, the result will look something like
- this:
- [source,js]
- ----
- {
- "num_lines_analyzed" : 53,
- "num_messages_analyzed" : 53,
- "sample_start" : "[2018-09-27T14:39:28,518][INFO ][o.e.e.NodeEnvironment ] [node-0] using [1] data paths, mounts [[/ (/dev/disk1)]], net usable_space [165.4gb], net total_space [464.7gb], types [hfs]\n[2018-09-27T14:39:28,521][INFO ][o.e.e.NodeEnvironment ] [node-0] heap size [494.9mb], compressed ordinary object pointers [true]\n",
- "charset" : "UTF-8",
- "has_byte_order_marker" : false,
- "format" : "semi_structured_text", <1>
- "multiline_start_pattern" : "^\\[\\b\\d{4}-\\d{2}-\\d{2}[T ]\\d{2}:\\d{2}", <2>
- "grok_pattern" : "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel}.*", <3>
- "timestamp_field" : "timestamp",
- "joda_timestamp_formats" : [
- "ISO8601"
- ],
- "java_timestamp_formats" : [
- "ISO8601"
- ],
- "need_client_timezone" : true,
- "mappings" : {
- "properties" : {
- "@timestamp" : {
- "type" : "date"
- },
- "loglevel" : {
- "type" : "keyword"
- },
- "message" : {
- "type" : "text"
- }
- }
- },
- "ingest_pipeline" : {
- "description" : "Ingest pipeline created by file structure finder",
- "processors" : [
- {
- "grok" : {
- "field" : "message",
- "patterns" : [
- "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel}.*"
- ]
- }
- },
- {
- "date" : {
- "field" : "timestamp",
- "timezone" : "{{ event.timezone }}",
- "formats" : [
- "ISO8601"
- ]
- }
- },
- {
- "remove" : {
- "field" : "timestamp"
- }
- }
- ]
- },
- "field_stats" : {
- "loglevel" : {
- "count" : 53,
- "cardinality" : 3,
- "top_hits" : [
- {
- "value" : "INFO",
- "count" : 51
- },
- {
- "value" : "DEBUG",
- "count" : 1
- },
- {
- "value" : "WARN",
- "count" : 1
- }
- ]
- },
- "timestamp" : {
- "count" : 53,
- "cardinality" : 28,
- "earliest" : "2018-09-27T14:39:28,518",
- "latest" : "2018-09-27T14:39:37,012",
- "top_hits" : [
- {
- "value" : "2018-09-27T14:39:29,859",
- "count" : 10
- },
- {
- "value" : "2018-09-27T14:39:29,860",
- "count" : 9
- },
- {
- "value" : "2018-09-27T14:39:29,858",
- "count" : 6
- },
- {
- "value" : "2018-09-27T14:39:28,523",
- "count" : 3
- },
- {
- "value" : "2018-09-27T14:39:34,234",
- "count" : 2
- },
- {
- "value" : "2018-09-27T14:39:28,518",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:28,521",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:28,522",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:29,861",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:32,786",
- "count" : 1
- }
- ]
- }
- }
- }
- ----
- // NOTCONSOLE
- <1> This time the `format` has been identified as `semi_structured_text`.
- <2> The `multiline_start_pattern` is set on the basis that the timestamp appears
- in the first line of each multi-line log message.
- <3> A very simple `grok_pattern` has been created, which extracts the timestamp
- and recognizable fields that appear in every analyzed message. In this case the
- only field that was recognized beyond the timestamp was the log level.
- [discrete]
- [[find-structure-example-grok]]
- === Specifying `grok_pattern` as query parameter
- If you recognize more fields than the simple `grok_pattern` produced by the
- structure finder unaided then you can resubmit the request specifying a more
- advanced `grok_pattern` as a query parameter and the structure finder will
- calculate `field_stats` for your additional fields.
- In the case of the {es} log a more complete Grok pattern is
- `\[%{TIMESTAMP_ISO8601:timestamp}\]\[%{LOGLEVEL:loglevel} *\]\[%{JAVACLASS:class} *\] \[%{HOSTNAME:node}\] %{JAVALOGMESSAGE:message}`.
- You can analyze the same log file again, submitting this `grok_pattern` as a
- query parameter (appropriately URL escaped):
- [source,js]
- ----
- curl -s -H "Content-Type: application/json" -XPOST "localhost:9200/_text_structure/find_structure?pretty&format=semi_structured_text&grok_pattern=%5C%5B%25%7BTIMESTAMP_ISO8601:timestamp%7D%5C%5D%5C%5B%25%7BLOGLEVEL:loglevel%7D%20*%5C%5D%5C%5B%25%7BJAVACLASS:class%7D%20*%5C%5D%20%5C%5B%25%7BHOSTNAME:node%7D%5C%5D%20%25%7BJAVALOGMESSAGE:message%7D" -T "$ES_HOME/logs/elasticsearch.log"
- ----
- // NOTCONSOLE
- // Not converting to console because this shows how curl can be used
- If the request does not encounter errors, the result will look something like
- this:
- [source,js]
- ----
- {
- "num_lines_analyzed" : 53,
- "num_messages_analyzed" : 53,
- "sample_start" : "[2018-09-27T14:39:28,518][INFO ][o.e.e.NodeEnvironment ] [node-0] using [1] data paths, mounts [[/ (/dev/disk1)]], net usable_space [165.4gb], net total_space [464.7gb], types [hfs]\n[2018-09-27T14:39:28,521][INFO ][o.e.e.NodeEnvironment ] [node-0] heap size [494.9mb], compressed ordinary object pointers [true]\n",
- "charset" : "UTF-8",
- "has_byte_order_marker" : false,
- "format" : "semi_structured_text",
- "multiline_start_pattern" : "^\\[\\b\\d{4}-\\d{2}-\\d{2}[T ]\\d{2}:\\d{2}",
- "grok_pattern" : "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel} *\\]\\[%{JAVACLASS:class} *\\] \\[%{HOSTNAME:node}\\] %{JAVALOGMESSAGE:message}", <1>
- "timestamp_field" : "timestamp",
- "joda_timestamp_formats" : [
- "ISO8601"
- ],
- "java_timestamp_formats" : [
- "ISO8601"
- ],
- "need_client_timezone" : true,
- "mappings" : {
- "properties" : {
- "@timestamp" : {
- "type" : "date"
- },
- "class" : {
- "type" : "keyword"
- },
- "loglevel" : {
- "type" : "keyword"
- },
- "message" : {
- "type" : "text"
- },
- "node" : {
- "type" : "keyword"
- }
- }
- },
- "ingest_pipeline" : {
- "description" : "Ingest pipeline created by file structure finder",
- "processors" : [
- {
- "grok" : {
- "field" : "message",
- "patterns" : [
- "\\[%{TIMESTAMP_ISO8601:timestamp}\\]\\[%{LOGLEVEL:loglevel} *\\]\\[%{JAVACLASS:class} *\\] \\[%{HOSTNAME:node}\\] %{JAVALOGMESSAGE:message}"
- ]
- }
- },
- {
- "date" : {
- "field" : "timestamp",
- "timezone" : "{{ event.timezone }}",
- "formats" : [
- "ISO8601"
- ]
- }
- },
- {
- "remove" : {
- "field" : "timestamp"
- }
- }
- ]
- },
- "field_stats" : { <2>
- "class" : {
- "count" : 53,
- "cardinality" : 14,
- "top_hits" : [
- {
- "value" : "o.e.p.PluginsService",
- "count" : 26
- },
- {
- "value" : "o.e.c.m.MetadataIndexTemplateService",
- "count" : 8
- },
- {
- "value" : "o.e.n.Node",
- "count" : 7
- },
- {
- "value" : "o.e.e.NodeEnvironment",
- "count" : 2
- },
- {
- "value" : "o.e.a.ActionModule",
- "count" : 1
- },
- {
- "value" : "o.e.c.s.ClusterApplierService",
- "count" : 1
- },
- {
- "value" : "o.e.c.s.MasterService",
- "count" : 1
- },
- {
- "value" : "o.e.d.DiscoveryModule",
- "count" : 1
- },
- {
- "value" : "o.e.g.GatewayService",
- "count" : 1
- },
- {
- "value" : "o.e.l.LicenseService",
- "count" : 1
- }
- ]
- },
- "loglevel" : {
- "count" : 53,
- "cardinality" : 3,
- "top_hits" : [
- {
- "value" : "INFO",
- "count" : 51
- },
- {
- "value" : "DEBUG",
- "count" : 1
- },
- {
- "value" : "WARN",
- "count" : 1
- }
- ]
- },
- "message" : {
- "count" : 53,
- "cardinality" : 53,
- "top_hits" : [
- {
- "value" : "Using REST wrapper from plugin org.elasticsearch.xpack.security.Security",
- "count" : 1
- },
- {
- "value" : "adding template [.monitoring-alerts] for index patterns [.monitoring-alerts-6]",
- "count" : 1
- },
- {
- "value" : "adding template [.monitoring-beats] for index patterns [.monitoring-beats-6-*]",
- "count" : 1
- },
- {
- "value" : "adding template [.monitoring-es] for index patterns [.monitoring-es-6-*]",
- "count" : 1
- },
- {
- "value" : "adding template [.monitoring-kibana] for index patterns [.monitoring-kibana-6-*]",
- "count" : 1
- },
- {
- "value" : "adding template [.monitoring-logstash] for index patterns [.monitoring-logstash-6-*]",
- "count" : 1
- },
- {
- "value" : "adding template [.triggered_watches] for index patterns [.triggered_watches*]",
- "count" : 1
- },
- {
- "value" : "adding template [.watch-history-9] for index patterns [.watcher-history-9*]",
- "count" : 1
- },
- {
- "value" : "adding template [.watches] for index patterns [.watches*]",
- "count" : 1
- },
- {
- "value" : "starting ...",
- "count" : 1
- }
- ]
- },
- "node" : {
- "count" : 53,
- "cardinality" : 1,
- "top_hits" : [
- {
- "value" : "node-0",
- "count" : 53
- }
- ]
- },
- "timestamp" : {
- "count" : 53,
- "cardinality" : 28,
- "earliest" : "2018-09-27T14:39:28,518",
- "latest" : "2018-09-27T14:39:37,012",
- "top_hits" : [
- {
- "value" : "2018-09-27T14:39:29,859",
- "count" : 10
- },
- {
- "value" : "2018-09-27T14:39:29,860",
- "count" : 9
- },
- {
- "value" : "2018-09-27T14:39:29,858",
- "count" : 6
- },
- {
- "value" : "2018-09-27T14:39:28,523",
- "count" : 3
- },
- {
- "value" : "2018-09-27T14:39:34,234",
- "count" : 2
- },
- {
- "value" : "2018-09-27T14:39:28,518",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:28,521",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:28,522",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:29,861",
- "count" : 1
- },
- {
- "value" : "2018-09-27T14:39:32,786",
- "count" : 1
- }
- ]
- }
- }
- }
- ----
- // NOTCONSOLE
- <1> The `grok_pattern` in the output is now the overridden one supplied in the
- query parameter.
- <2> The returned `field_stats` include entries for the fields from the
- overridden `grok_pattern`.
- The URL escaping is hard, so if you are working interactively it is best to use
- the UI!
|