evaluateresources.asciidoc 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. [role="xpack"]
  2. [testenv="platinum"]
  3. [[ml-evaluate-dfanalytics-resources]]
  4. === {dfanalytics-cap} evaluation resources
  5. Evaluation configuration objects relate to the <<evaluate-dfanalytics>>.
  6. [discrete]
  7. [[ml-evaluate-dfanalytics-properties]]
  8. ==== {api-definitions-title}
  9. `evaluation`::
  10. (object) Defines the type of evaluation you want to perform. The value of this
  11. object can be different depending on the type of evaluation you want to
  12. perform.
  13. +
  14. --
  15. Available evaluation types:
  16. * `binary_soft_classification`
  17. * `regression`
  18. --
  19. `query`::
  20. (object) A query clause that retrieves a subset of data from the source index.
  21. See <<query-dsl>>. The evaluation only applies to those documents of the index
  22. that match the query.
  23. [[binary-sc-resources]]
  24. ==== Binary soft classification configuration objects
  25. Binary soft classification evaluates the results of an analysis which outputs
  26. the probability that each document belongs to a certain class. For
  27. example, in the context of outlier detection, the analysis outputs the
  28. probability whether each document is an outlier.
  29. [discrete]
  30. [[binary-sc-resources-properties]]
  31. ===== {api-definitions-title}
  32. `actual_field`::
  33. (string) The field of the `index` which contains the `ground truth`.
  34. The data type of this field can be boolean or integer. If the data type is
  35. integer, the value has to be either `0` (false) or `1` (true).
  36. `predicted_probability_field`::
  37. (string) The field of the `index` that defines the probability of
  38. whether the item belongs to the class in question or not. It's the field that
  39. contains the results of the analysis.
  40. `metrics`::
  41. (object) Specifies the metrics that are used for the evaluation.
  42. Available metrics:
  43. `auc_roc`::
  44. (object) The AUC ROC (area under the curve of the receiver operating
  45. characteristic) score and optionally the curve.
  46. Default value is {"includes_curve": false}.
  47. `precision`::
  48. (object) Set the different thresholds of the {olscore} at where the metric
  49. is calculated.
  50. Default value is {"at": [0.25, 0.50, 0.75]}.
  51. `recall`::
  52. (object) Set the different thresholds of the {olscore} at where the metric
  53. is calculated.
  54. Default value is {"at": [0.25, 0.50, 0.75]}.
  55. `confusion_matrix`::
  56. (object) Set the different thresholds of the {olscore} at where the metrics
  57. (`tp` - true positive, `fp` - false positive, `tn` - true negative, `fn` -
  58. false negative) are calculated.
  59. Default value is {"at": [0.25, 0.50, 0.75]}.
  60. [[regression-evaluation-resources]]
  61. ==== {regression-cap} evaluation objects
  62. {regression-cap} evaluation evaluates the results of a {regression} analysis
  63. which outputs a prediction of values.
  64. [discrete]
  65. [[regression-evaluation-resources-properties]]
  66. ===== {api-definitions-title}
  67. `actual_field`::
  68. (string) The field of the `index` which contains the `ground truth`. The data
  69. type of this field must be numerical.
  70. `predicted_field`::
  71. (string) The field in the `index` that contains the predicted value,
  72. in other words the results of the {regression} analysis.
  73. `metrics`::
  74. (object) Specifies the metrics that are used for the evaluation. Available
  75. metrics are `r_squared` and `mean_squared_error`.