| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 | [role="xpack"][testenv="basic"][[transform-painless-examples]]=== Painless examples for {transforms}++++<titleabbrev>Painless examples for {transforms}</titleabbrev>++++These examples demonstrate how to use Painless in {transforms}. You can learn more about the Painless scripting language in the {painless}/painless-guide.html[Painless guide].* <<painless-top-hits>>* <<painless-time-features>>* <<painless-group-by>>* <<painless-bucket-script>>* <<painless-count-http>>* <<painless-compare>>NOTE: While the context of the following examples is the {transform} use case, the Painless scripts in the snippets below can be used in other {es} search aggregations, too.[discrete][[painless-top-hits]]==== Getting top hits by using scripted metric aggregationThis snippet shows how to find the latest document, in other words the document with the earliest timestamp. From a technical perspective, it helps to achieve the function of a <<search-aggregations-metrics-top-hits-aggregation>> by using scripted metric aggregation in a {transform}, which provides a metric output.[source,js]--------------------------------------------------"aggregations": {  "latest_doc": {     "scripted_metric": {      "init_script": "state.timestamp_latest = 0L; state.last_doc = ''", <1>      "map_script": """ <2>        def current_date = doc['@timestamp'].getValue().toInstant().toEpochMilli();         if (current_date > state.timestamp_latest)         {state.timestamp_latest = current_date;        state.last_doc = new HashMap(params['_source']);}      """,      "combine_script": "return state", <3>      "reduce_script": """ <4>        def last_doc = '';        def timestamp_latest = 0L;        for (s in states) {if (s.timestamp_latest > (timestamp_latest))        {timestamp_latest = s.timestamp_latest; last_doc = s.last_doc;}}         return last_doc      """    }  }}--------------------------------------------------// NOTCONSOLE<1> The `init_script` creates a long type `timestamp_latest` and a string type `last_doc` in the `state` object.<2> The `map_script` defines `current_date` based on the timestamp of the document, then compares `current_date` with `state.timestamp_latest`, finally returns `state.last_doc` from the shard. By using `new HashMap(...)` you copy the source document, this is important whenever you want to pass the full source object from one phase to the next.<3> The `combine_script` returns `state` from each shard.<4> The `reduce_script` iterates through the value of `s.timestamp_latest` returned by each shard and returns the document with the latest timestamp (`last_doc`). In the response, the top hit (in other words, the `latest_doc`) is nested below the `latest_doc` field.Check the<<scripted-metric-aggregation-scope,scope of scripts>>for detailed explanation on the respective scripts.You can retrieve the last value in a similar way: [source,js]--------------------------------------------------"aggregations": {  "latest_value": {    "scripted_metric": {      "init_script": "state.timestamp_latest = 0L; state.last_value = ''",      "map_script": """        def current_date = doc['date'].getValue().toInstant().toEpochMilli();         if (current_date > state.timestamp_latest)         {state.timestamp_latest = current_date;        state.last_value = params['_source']['value'];}      """,      "combine_script": "return state",      "reduce_script": """        def last_value = '';        def timestamp_latest = 0L;         for (s in states) {if (s.timestamp_latest > (timestamp_latest))         {timestamp_latest = s.timestamp_latest; last_value = s.last_value;}}         return last_value      """    }  }}--------------------------------------------------// NOTCONSOLE[discrete][[painless-time-features]]==== Getting time features as scripted fieldsThis snippet shows how to extract time based features by using Painless in a {transform}. The snippet uses an index where `@timestamp` is defined as a `date` type field.[source,js]--------------------------------------------------"aggregations": {  "script_fields": {      "hour_of_day": { <1>        "script": {          "lang": "painless",          "source": """            ZonedDateTime date =  doc['@timestamp'].value; <2>            return date.getHour(); <3>          """        }      },      "month_of_year": { <4>        "script": {          "lang": "painless",          "source": """            ZonedDateTime date =  doc['@timestamp'].value; <5>            return date.getMonthValue(); <6>          """        }      }    },  ...}--------------------------------------------------// NOTCONSOLE<1> Contains the Painless script that returns the hour of the day.<2> Sets `date` based on the timestamp of the document.<3> Returns the hour value from `date`.<4> Contains the Painless script that returns the month of the year.<5> Sets `date` based on the timestamp of the document.<6> Returns the month value from `date`.[discrete][[painless-group-by]]==== Using Painless in `group_by`It is possible to base the `group_by` property of a {transform} on the output of a script. The following example uses the {kib} sample web logs dataset. The goal here is to make the {transform} output easier to understand through normalizing the value of the fields that the data is grouped by.[source,console]--------------------------------------------------POST _transform/_preview{  "source": {    "index": [ <1>      "kibana_sample_data_logs"    ]  },  "pivot": {    "group_by": {      "agent": {        "terms": {          "script": { <2>            "source": """String agent = doc['agent.keyword'].value;             if (agent.contains("MSIE")) {               return "internet explorer";            } else if (agent.contains("AppleWebKit")) {               return "safari";             } else if (agent.contains('Firefox')) {               return "firefox";            } else { return agent }""",            "lang": "painless"          }        }      }    },    "aggregations": { <3>      "200": {        "filter": {          "term": {            "response": "200"          }        }      },      "404": {        "filter": {          "term": {            "response": "404"          }        }      },      "503": {        "filter": {          "term": {            "response": "503"          }        }      }    }  },  "dest": { <4>    "index": "pivot_logs"  }} --------------------------------------------------// TEST[skip:setup kibana sample data]<1> Specifies the source index or indices.<2> The script defines an `agent` string based on the `agent` field of the documents, then iterates through the values. If an `agent` field contains "MSIE", than the script returns "Internet Explorer". If it contains `AppleWebKit`, it returns "safari". It returns "firefox" if the field value contains "Firefox". Finally, in every other case, the value of the field is returned.<3> The aggregations object contains filters that narrow down the results to documents that contains `200`, `404`, or `503` values in the `response` field.<4> Specifies the destination index of the {transform}.The API returns the following result:[source,js]--------------------------------------------------{  "preview" : [    {      "agent" : "firefox",      "200" : 4931,      "404" : 259,      "503" : 172    },    {      "agent" : "internet explorer",      "200" : 3674,      "404" : 210,      "503" : 126    },    {      "agent" : "safari",      "200" : 4227,      "404" : 332,      "503" : 143    }  ],  "mappings" : {    "properties" : {      "200" : {        "type" : "long"      },      "agent" : {        "type" : "keyword"      },      "404" : {        "type" : "long"      },      "503" : {        "type" : "long"      }    }  }}--------------------------------------------------// NOTCONSOLEYou can see that the `agent` values are simplified so it is easier to interpret them. The table below shows how normalization modifies the output of the {transform} in our example compared to the non-normalized values.[width="50%"]|===| Non-normalized `agent` value                                                 | Normalized `agent` value | "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)" | "internet explorer"| "Mozilla/5.0 (X11; Linux i686) AppleWebKit/534.24 (KHTML, like Gecko) Chrome/11.0.696.50 Safari/534.24" | "safari"| "Mozilla/5.0 (X11; Linux x86_64; rv:6.0a1) Gecko/20110421 Firefox/6.0a1" | "firefox"|===[discrete][[painless-bucket-script]]==== Getting duration by using bucket scriptThis example shows you how to get the duration of a session by client IP from a data log by using {ref}/search-aggregations-pipeline-bucket-script-aggregation.html[bucket script]. The example uses the {kib} sample web logs dataset.[source,console]--------------------------------------------------PUT _data_frame/transforms/data_log{  "source": {    "index": "kibana_sample_data_logs"  },  "dest": {    "index": "data-logs-by-client"  },  "pivot": {    "group_by": {      "machine.os": {"terms": {"field": "machine.os.keyword"}},      "machine.ip": {"terms": {"field": "clientip"}}    },    "aggregations": {      "time_frame.lte": {        "max": {          "field": "timestamp"        }      },      "time_frame.gte": {        "min": {          "field": "timestamp"        }      },      "time_length": { <1>        "bucket_script": {          "buckets_path": { <2>            "min": "time_frame.gte.value",            "max": "time_frame.lte.value"          },          "script": "params.max - params.min" <3>        }      }    }  }}--------------------------------------------------// TEST[skip:setup kibana sample data]<1> To define the length of the sessions, we use a bucket script.<2> The bucket path is a map of script variables and their associated path to the buckets you want to use for the variable. In this particular case, `min` and `max` are variables mapped to `time_frame.gte.value` and `time_frame.lte.value`.<3> Finally, the script substracts the start date of the session from the end date which results in the duration of the session.[discrete][[painless-count-http]]==== Counting HTTP responses by using scripted metric aggregationYou can count the different HTTP response types in a web log data set by using scripted metric aggregation as part of the {transform}. The example below assumes that the HTTP response codes are stored as keywords in the `response` field of the documents.[source,js]--------------------------------------------------"aggregations": { <1>  "responses.counts": { <2>    "scripted_metric": { <3>      "init_script": "state.responses = ['error':0L,'success':0L,'other':0L]", <4>      "map_script": """ <5>        def code = doc['response.keyword'].value;        if (code.startsWith('5') || code.startsWith('4')) {          state.responses.error += 1 ;        } else if(code.startsWith('2')) {          state.responses.success += 1;        } else {          state.responses.other += 1;        }        """,      "combine_script": "state.responses", <6>      "reduce_script": """ <7>        def counts = ['error': 0L, 'success': 0L, 'other': 0L];        for (responses in states) {          counts.error += responses['error'];          counts.success += responses['success'];          counts.other += responses['other'];        }        return counts;        """      }    },  ...  }--------------------------------------------------// NOTCONSOLE<1> The `aggregations` object of the {transform} that contains all aggregations.<2> Object of the `scripted_metric` aggregation.<3> This `scripted_metric` performs a distributed operation on the web log data to count specific types of HTTP responses (error, success, and other).<4> The `init_script` creates a `responses` array in the `state` object with three properties (`error`, `success`, `other`) with long data type.<5> The `map_script` defines `code` based on the `response.keyword` value of the document, then it counts the errors, successes, and other responses based on the first digit of the responses.<6> The `combine_script` returns `state.responses` from each shard.<7> The `reduce_script` creates a `counts` array with the `error`, `success`, and `other` properties, then iterates through the value of `responses` returned by each shard and assigns the different response types to the appropriate properties of the `counts` object; error responses to the error counts, success responses to the success counts, and other responses to the other counts. Finally, returns the `counts` array with the response counts.[discrete][[painless-compare]]==== Comparing indices by using scripted metric aggregationsThis example shows how to compare the content of two indices by a {transform} that uses a scripted metric aggregation. [source,console]--------------------------------------------------POST _transform/_preview{  "id" : "index_compare",  "source" : { <1>    "index" : [      "index1",      "index2"    ],    "query" : {      "match_all" : { }    }  },  "dest" : { <2>    "index" : "compare"  },  "pivot" : {    "group_by" : {      "unique-id" : {        "terms" : {          "field" : "<unique-id-field>" <3>        }      }    },    "aggregations" : {      "compare" : { <4>        "scripted_metric" : {          "init_script" : "",          "map_script" : "state.doc = new HashMap(params['_source'])", <5>          "combine_script" : "return state", <6>          "reduce_script" : """ <7>            if (states.size() != 2) {              return "count_mismatch"            }            if (states.get(0).equals(states.get(1))) {              return "match"            } else {              return "mismatch"            }            """        }      }    }  }}--------------------------------------------------// TEST[skip:setup kibana sample data]<1> The indices referenced in the `source` object are compared to each other.<2> The `dest` index contains the results of the comparison.<3> The `group_by` field needs to be a unique identifier for each document.<4> Object of the `scripted_metric` aggregation.<5> The `map_script` defines `doc` in the state object. By using `new HashMap(...)` you copy the source document, this is important whenever you want to pass the full source object from one phase to the next.<6> The `combine_script` returns `state` from each shard.<7> The `reduce_script` checks if the size of the indices are equal. If they are not equal, than it reports back a `count_mismatch`. Then it iterates through all the values of the two indices and compare them. If the values are equal, then it returns a `match`, otherwise returns a `mismatch`.
 |