ml-shared.asciidoc 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928
  1. tag::aggregations[]
  2. If set, the {dfeed} performs aggregation searches. Support for aggregations is
  3. limited and should be used only with low cardinality data. For more information,
  4. see
  5. {ml-docs}/ml-configuring-aggregation.html[Aggregating data for faster performance].
  6. end::aggregations[]
  7. tag::allow-lazy-open[]
  8. Advanced configuration option. Specifies whether this job can open when there is
  9. insufficient {ml} node capacity for it to be immediately assigned to a node. The
  10. default value is `false`; if a {ml} node with capacity to run the job cannot
  11. immediately be found, the <<ml-open-job,open {anomaly-jobs} API>> returns an
  12. error. However, this is also subject to the cluster-wide
  13. `xpack.ml.max_lazy_ml_nodes` setting; see <<advanced-ml-settings>>. If this
  14. option is set to `true`, the <<ml-open-job,open {anomaly-jobs} API>> does not
  15. return an error and the job waits in the `opening` state until sufficient {ml}
  16. node capacity is available.
  17. end::allow-lazy-open[]
  18. tag::allow-lazy-start[]
  19. Whether this job should be allowed to start when there is insufficient {ml} node
  20. capacity for it to be immediately assigned to a node. The default is `false`,
  21. which means that the <<start-dfanalytics>> will return an error if a {ml} node
  22. with capacity to run the job cannot immediately be found. (However, this is also
  23. subject to the cluster-wide `xpack.ml.max_lazy_ml_nodes` setting - see
  24. <<advanced-ml-settings>>.) If this option is set to `true` then the
  25. <<start-dfanalytics>> will not return an error, and the job will wait in the
  26. `starting` state until sufficient {ml} node capacity is available.
  27. end::allow-lazy-start[]
  28. tag::allow-no-datafeeds[]
  29. Specifies what to do when the request:
  30. +
  31. --
  32. * Contains wildcard expressions and there are no {dfeeds} that match.
  33. * Contains the `_all` string or no identifiers and there are no matches.
  34. * Contains wildcard expressions and there are only partial matches.
  35. The default value is `true`, which returns an empty `datafeeds` array when
  36. there are no matches and the subset of results when there are partial matches.
  37. If this parameter is `false`, the request returns a `404` status code when there
  38. are no matches or only partial matches.
  39. --
  40. end::allow-no-datafeeds[]
  41. tag::allow-no-jobs[]
  42. Specifies what to do when the request:
  43. +
  44. --
  45. * Contains wildcard expressions and there are no jobs that match.
  46. * Contains the `_all` string or no identifiers and there are no matches.
  47. * Contains wildcard expressions and there are only partial matches.
  48. The default value is `true`, which returns an empty `jobs` array
  49. when there are no matches and the subset of results when there are partial
  50. matches. If this parameter is `false`, the request returns a `404` status code
  51. when there are no matches or only partial matches.
  52. --
  53. end::allow-no-jobs[]
  54. tag::allow-no-match[]
  55. Specifies what to do when the request:
  56. +
  57. --
  58. * Contains wildcard expressions and there are no {dfanalytics-jobs} that match.
  59. * Contains the `_all` string or no identifiers and there are no matches.
  60. * Contains wildcard expressions and there are only partial matches.
  61. The default value is `true`, which returns an empty `data_frame_analytics` array
  62. when there are no matches and the subset of results when there are partial
  63. matches. If this parameter is `false`, the request returns a `404` status code
  64. when there are no matches or only partial matches.
  65. --
  66. end::allow-no-match[]
  67. tag::analysis[]
  68. Defines the type of {dfanalytics} you want to perform on your source index. For
  69. example: `outlier_detection`. See <<ml-dfa-analysis-objects>>.
  70. end::analysis[]
  71. tag::analysis-config[]
  72. The analysis configuration, which specifies how to analyze the data. After you
  73. create a job, you cannot change the analysis configuration; all the properties
  74. are informational.
  75. end::analysis-config[]
  76. tag::analysis-limits[]
  77. Limits can be applied for the resources required to hold the mathematical models
  78. in memory. These limits are approximate and can be set per job. They do not
  79. control the memory used by other processes, for example the {es} Java processes.
  80. end::analysis-limits[]
  81. tag::assignment-explanation-anomaly-jobs[]
  82. For open {anomaly-jobs} only, contains messages relating to the selection
  83. of a node to run the job.
  84. end::assignment-explanation-anomaly-jobs[]
  85. tag::assignment-explanation-datafeeds[]
  86. For started {dfeeds} only, contains messages relating to the selection of a
  87. node.
  88. end::assignment-explanation-datafeeds[]
  89. tag::assignment-explanation-dfanalytics[]
  90. Contains messages relating to the selection of a node.
  91. end::assignment-explanation-dfanalytics[]
  92. tag::background-persist-interval[]
  93. Advanced configuration option. The time between each periodic persistence of the
  94. model. The default value is a randomized value between 3 to 4 hours, which
  95. avoids all jobs persisting at exactly the same time. The smallest allowed value
  96. is 1 hour.
  97. +
  98. --
  99. TIP: For very large models (several GB), persistence could take 10-20 minutes,
  100. so do not set the `background_persist_interval` value too low.
  101. --
  102. end::background-persist-interval[]
  103. tag::bucket-allocation-failures-count[]
  104. The number of buckets for which new entities in incoming data were not processed
  105. due to insufficient model memory. This situation is also signified by a
  106. `hard_limit: memory_status` property value.
  107. end::bucket-allocation-failures-count[]
  108. tag::bucket-count[]
  109. The number of buckets processed.
  110. end::bucket-count[]
  111. tag::bucket-count-anomaly-jobs[]
  112. The number of bucket results produced by the job.
  113. end::bucket-count-anomaly-jobs[]
  114. tag::bucket-span[]
  115. The size of the interval that the analysis is aggregated into, typically between
  116. `5m` and `1h`. The default value is `5m`. If the {anomaly-job} uses a {dfeed}
  117. with {ml-docs}/ml-configuring-aggregation.html[aggregations], this value must be
  118. divisible by the interval of the date histogram aggregation. For more
  119. information, see {ml-docs}/ml-buckets.html[Buckets].
  120. end::bucket-span[]
  121. tag::bucket-span-results[]
  122. The length of the bucket in seconds. This value matches the `bucket_span`
  123. that is specified in the job.
  124. end::bucket-span-results[]
  125. tag::bucket-time-exponential-average[]
  126. Exponential moving average of all bucket processing times, in milliseconds.
  127. end::bucket-time-exponential-average[]
  128. tag::bucket-time-exponential-average-hour[]
  129. Exponentially-weighted moving average of bucket processing times
  130. calculated in a 1 hour time window, in milliseconds.
  131. end::bucket-time-exponential-average-hour[]
  132. tag::bucket-time-maximum[]
  133. Maximum among all bucket processing times, in milliseconds.
  134. end::bucket-time-maximum[]
  135. tag::bucket-time-minimum[]
  136. Minimum among all bucket processing times, in milliseconds.
  137. end::bucket-time-minimum[]
  138. tag::bucket-time-total[]
  139. Sum of all bucket processing times, in milliseconds.
  140. end::bucket-time-total[]
  141. tag::by-field-name[]
  142. The field used to split the data. In particular, this property is used for
  143. analyzing the splits with respect to their own history. It is used for finding
  144. unusual values in the context of the split.
  145. end::by-field-name[]
  146. tag::calendar-id[]
  147. A string that uniquely identifies a calendar.
  148. end::calendar-id[]
  149. tag::categorization-analyzer[]
  150. If `categorization_field_name` is specified, you can also define the analyzer
  151. that is used to interpret the categorization field. This property cannot be used
  152. at the same time as `categorization_filters`. The categorization analyzer
  153. specifies how the `categorization_field` is interpreted by the categorization
  154. process. The syntax is very similar to that used to define the `analyzer` in the
  155. <<indices-analyze,Analyze endpoint>>. For more information, see
  156. {ml-docs}/ml-configuring-categories.html[Categorizing log messages].
  157. +
  158. The `categorization_analyzer` field can be specified either as a string or as an
  159. object. If it is a string it must refer to a
  160. <<analysis-analyzers,built-in analyzer>> or one added by another plugin. If it
  161. is an object it has the following properties:
  162. +
  163. .Properties of `categorization_analyzer`
  164. [%collapsible%open]
  165. =====
  166. `char_filter`::::
  167. (array of strings or objects)
  168. include::{docdir}/ml/ml-shared.asciidoc[tag=char-filter]
  169. `tokenizer`::::
  170. (string or object)
  171. include::{docdir}/ml/ml-shared.asciidoc[tag=tokenizer]
  172. `filter`::::
  173. (array of strings or objects)
  174. include::{docdir}/ml/ml-shared.asciidoc[tag=filter]
  175. =====
  176. end::categorization-analyzer[]
  177. tag::categorization-examples-limit[]
  178. The maximum number of examples stored per category in memory and in the results
  179. data store. The default value is 4. If you increase this value, more examples
  180. are available, however it requires that you have more storage available. If you
  181. set this value to `0`, no examples are stored.
  182. +
  183. NOTE: The `categorization_examples_limit` only applies to analysis that uses
  184. categorization. For more information, see
  185. {ml-docs}/ml-configuring-categories.html[Categorizing log messages].
  186. end::categorization-examples-limit[]
  187. tag::categorization-field-name[]
  188. If this property is specified, the values of the specified field will be
  189. categorized. The resulting categories must be used in a detector by setting
  190. `by_field_name`, `over_field_name`, or `partition_field_name` to the keyword
  191. `mlcategory`. For more information, see
  192. {ml-docs}/ml-configuring-categories.html[Categorizing log messages].
  193. end::categorization-field-name[]
  194. tag::categorization-filters[]
  195. If `categorization_field_name` is specified, you can also define optional
  196. filters. This property expects an array of regular expressions. The expressions
  197. are used to filter out matching sequences from the categorization field values.
  198. You can use this functionality to fine tune the categorization by excluding
  199. sequences from consideration when categories are defined. For example, you can
  200. exclude SQL statements that appear in your log files. For more information, see
  201. {ml-docs}/ml-configuring-categories.html[Categorizing log messages]. This
  202. property cannot be used at the same time as `categorization_analyzer`. If you
  203. only want to define simple regular expression filters that are applied prior to
  204. tokenization, setting this property is the easiest method. If you also want to
  205. customize the tokenizer or post-tokenization filtering, use the
  206. `categorization_analyzer` property instead and include the filters as
  207. `pattern_replace` character filters. The effect is exactly the same.
  208. end::categorization-filters[]
  209. tag::categorization-status[]
  210. The status of categorization for the job. Contains one of the following values:
  211. +
  212. --
  213. * `ok`: Categorization is performing acceptably well (or not being used at all).
  214. * `warn`: Categorization is detecting a distribution of categories that suggests
  215. the input data is inappropriate for categorization. Problems could be that there
  216. is only one category, more than 90% of categories are rare, the number of
  217. categories is greater than 50% of the number of categorized documents, there are
  218. no frequently matched categories, or more than 50% of categories are dead.
  219. --
  220. end::categorization-status[]
  221. tag::categorized-doc-count[]
  222. The number of documents that have had a field categorized.
  223. end::categorized-doc-count[]
  224. tag::char-filter[]
  225. One or more <<analysis-charfilters,character filters>>. In addition to the
  226. built-in character filters, other plugins can provide more character filters.
  227. This property is optional. If it is not specified, no character filters are
  228. applied prior to categorization. If you are customizing some other aspect of the
  229. analyzer and you need to achieve the equivalent of `categorization_filters`
  230. (which are not permitted when some other aspect of the analyzer is customized),
  231. add them here as
  232. <<analysis-pattern-replace-charfilter,pattern replace character filters>>.
  233. end::char-filter[]
  234. tag::compute-feature-influence[]
  235. If `true`, the feature influence calculation is enabled. Defaults to `true`.
  236. end::compute-feature-influence[]
  237. tag::chunking-config[]
  238. {dfeeds-cap} might be required to search over long time periods, for several
  239. months or years. This search is split into time chunks in order to ensure the
  240. load on {es} is managed. Chunking configuration controls how the size of these
  241. time chunks are calculated and is an advanced configuration option.
  242. +
  243. .Properties of `chunking_config`
  244. [%collapsible%open]
  245. ====
  246. `mode`:::
  247. (string)
  248. include::{docdir}/ml/ml-shared.asciidoc[tag=mode]
  249. `time_span`:::
  250. (<<time-units,time units>>)
  251. include::{docdir}/ml/ml-shared.asciidoc[tag=time-span]
  252. ====
  253. end::chunking-config[]
  254. tag::class-assignment-objective[]
  255. Defines the objective to optimize when assigning class labels. Available
  256. objectives are `maximize_accuracy` and `maximize_minimum_recall`. When maximizing
  257. accuracy class labels are chosen to maximize the number of correct predictions.
  258. When maximizing minimum recall labels are chosen to maximize the minimum recall
  259. for any class. Defaults to maximize_minimum_recall.
  260. end::class-assignment-objective[]
  261. tag::custom-rules[]
  262. An array of custom rule objects, which enable you to customize the way detectors
  263. operate. For example, a rule may dictate to the detector conditions under which
  264. results should be skipped. For more examples, see
  265. {ml-docs}/ml-configuring-detector-custom-rules.html[Customizing detectors with custom rules].
  266. end::custom-rules[]
  267. tag::custom-rules-actions[]
  268. The set of actions to be triggered when the rule applies. If
  269. more than one action is specified the effects of all actions are combined. The
  270. available actions include:
  271. * `skip_result`: The result will not be created. This is the default value.
  272. Unless you also specify `skip_model_update`, the model will be updated as usual
  273. with the corresponding series value.
  274. * `skip_model_update`: The value for that series will not be used to update the
  275. model. Unless you also specify `skip_result`, the results will be created as
  276. usual. This action is suitable when certain values are expected to be
  277. consistently anomalous and they affect the model in a way that negatively
  278. impacts the rest of the results.
  279. end::custom-rules-actions[]
  280. tag::custom-rules-scope[]
  281. An optional scope of series where the rule applies. A rule must either
  282. have a non-empty scope or at least one condition. By default, the scope includes
  283. all series. Scoping is allowed for any of the fields that are also specified in
  284. `by_field_name`, `over_field_name`, or `partition_field_name`. To add a scope
  285. for a field, add the field name as a key in the scope object and set its value
  286. to an object with the following properties:
  287. end::custom-rules-scope[]
  288. tag::custom-rules-scope-filter-id[]
  289. The id of the filter to be used.
  290. end::custom-rules-scope-filter-id[]
  291. tag::custom-rules-scope-filter-type[]
  292. Either `include` (the rule applies for values in the filter) or `exclude` (the
  293. rule applies for values not in the filter). Defaults to `include`.
  294. end::custom-rules-scope-filter-type[]
  295. tag::custom-rules-conditions[]
  296. An optional array of numeric conditions when the rule applies. A rule must
  297. either have a non-empty scope or at least one condition. Multiple conditions are
  298. combined together with a logical `AND`. A condition has the following
  299. properties:
  300. end::custom-rules-conditions[]
  301. tag::custom-rules-conditions-applies-to[]
  302. Specifies the result property to which the condition applies. The available
  303. options are `actual`, `typical`, `diff_from_typical`, `time`. If your detector
  304. uses `lat_long`, `metric`, `rare`, or `freq_rare` functions, you can only
  305. specify conditions that apply to `time`.
  306. end::custom-rules-conditions-applies-to[]
  307. tag::custom-rules-conditions-operator[]
  308. Specifies the condition operator. The available options are `gt` (greater than),
  309. `gte` (greater than or equals), `lt` (less than) and `lte` (less than or
  310. equals).
  311. end::custom-rules-conditions-operator[]
  312. tag::custom-rules-conditions-value[]
  313. The value that is compared against the `applies_to` field using the `operator`.
  314. end::custom-rules-conditions-value[]
  315. tag::custom-settings[]
  316. Advanced configuration option. Contains custom meta data about the job. For
  317. example, it can contain custom URL information as shown in
  318. {ml-docs}/ml-configuring-url.html[Adding custom URLs to {ml} results].
  319. end::custom-settings[]
  320. tag::data-description[]
  321. The data description defines the format of the input data when you send data to
  322. the job by using the <<ml-post-data,post data>> API. Note that when configure
  323. a {dfeed}, these properties are automatically set. When data is received via
  324. the <<ml-post-data,post data>> API, it is not stored in {es}. Only the results
  325. for {anomaly-detect} are retained.
  326. +
  327. .Properties of `data_description`
  328. [%collapsible%open]
  329. ====
  330. `format`:::
  331. (string) Only `JSON` format is supported at this time.
  332. `time_field`:::
  333. (string) The name of the field that contains the timestamp.
  334. The default value is `time`.
  335. `time_format`:::
  336. (string)
  337. include::{docdir}/ml/ml-shared.asciidoc[tag=time-format]
  338. ====
  339. end::data-description[]
  340. tag::data-frame-analytics[]
  341. An array of {dfanalytics-job} resources, which are sorted by the `id` value in
  342. ascending order.
  343. +
  344. .Properties of {dfanalytics-job} resources
  345. [%collapsible%open]
  346. ====
  347. `analysis`:::
  348. (object) The type of analysis that is performed on the `source`.
  349. //Begin analyzed_fields
  350. `analyzed_fields`:::
  351. (object) Contains `includes` and/or `excludes` patterns that select which fields
  352. are included in the analysis.
  353. +
  354. .Properties of `analyzed_fields`
  355. [%collapsible%open]
  356. =====
  357. `excludes`:::
  358. (Optional, array) An array of strings that defines the fields that are excluded
  359. from the analysis.
  360. `includes`:::
  361. (Optional, array) An array of strings that defines the fields that are included
  362. in the analysis.
  363. =====
  364. //End analyzed_fields
  365. //Begin dest
  366. `dest`:::
  367. (string) The destination configuration of the analysis.
  368. +
  369. .Properties of `dest`
  370. [%collapsible%open]
  371. =====
  372. `index`:::
  373. (string) The _destination index_ that stores the results of the
  374. {dfanalytics-job}.
  375. `results_field`:::
  376. (string) The name of the field that stores the results of the analysis. Defaults
  377. to `ml`.
  378. =====
  379. //End dest
  380. `id`:::
  381. (string) The unique identifier of the {dfanalytics-job}.
  382. `model_memory_limit`:::
  383. (string) The `model_memory_limit` that has been set to the {dfanalytics-job}.
  384. `source`:::
  385. (object) The configuration of how the analysis data is sourced. It has an
  386. `index` parameter and optionally a `query` and a `_source`.
  387. +
  388. .Properties of `source`
  389. [%collapsible%open]
  390. =====
  391. `index`:::
  392. (array) Index or indices on which to perform the analysis. It can be a single
  393. index or index pattern as well as an array of indices or patterns.
  394. `query`:::
  395. (object) The query that has been specified for the {dfanalytics-job}. The {es}
  396. query domain-specific language (<<query-dsl,DSL>>). This value corresponds to
  397. the query object in an {es} search POST body. By default, this property has the
  398. following value: `{"match_all": {}}`.
  399. `_source`:::
  400. (object) Contains the specified `includes` and/or `excludes` patterns that
  401. select which fields are present in the destination. Fields that are excluded
  402. cannot be included in the analysis.
  403. +
  404. .Properties of `_source`
  405. [%collapsible%open]
  406. ======
  407. `excludes`:::
  408. (array) An array of strings that defines the fields that are excluded from the
  409. destination.
  410. `includes`:::
  411. (array) An array of strings that defines the fields that are included in the
  412. destination.
  413. ======
  414. //End of _source
  415. =====
  416. //End source
  417. ====
  418. end::data-frame-analytics[]
  419. tag::data-frame-analytics-stats[]
  420. An array of statistics objects for {dfanalytics-jobs}, which are
  421. sorted by the `id` value in ascending order.
  422. //Begin analysis_stats
  423. `analysis_stats`::
  424. (object)
  425. An object containing statistical data about the analysis.
  426. +
  427. .Properties of `analysis_stats`
  428. [%collapsible%open]
  429. ====
  430. //Begin classification_stats
  431. `classification_stats`:::
  432. (object)
  433. An object containing statistical data about the {classanalysis}.
  434. +
  435. .Properties of `classification_stats`
  436. [%collapsible%open]
  437. =====
  438. //Begin class_hyperparameters
  439. `hyperparameters`::::
  440. (object)
  441. An object containing the parameters of the {classanalysis}.
  442. +
  443. .Properties of `hyperparameters`
  444. [%collapsible%open]
  445. ======
  446. tag::dfas-alpha[]
  447. `alpha`::::
  448. (double)
  449. Regularization factor to penalize deeper trees when training decision trees.
  450. end::dfas-alpha[]
  451. `class_assignment_objective`::::
  452. (string)
  453. Defines whether class assignment maximizes the accuracy or the minimum recall
  454. metric. Possible values are `maximize_accuracy` and `maximize_minimum_recall`.
  455. tag::dfas-downsample-factor[]
  456. `downsample_factor`::::
  457. (double)
  458. The value of the downsample factor.
  459. end::dfas-downsample-factor[]
  460. tag::dfas-eta[]
  461. `eta`::::
  462. (double)
  463. The value of the eta hyperparameter.
  464. end::dfas-eta[]
  465. tag::dfas-eta-growth[]
  466. `eta_growth_rate_per_tree`::::
  467. (double)
  468. Specifies the rate at which the `eta` increases for each new tree that is added to the
  469. forest. For example, a rate of `1.05` increases `eta` by 5%.
  470. end::dfas-eta-growth[]
  471. tag::dfas-feature-bag-fraction[]
  472. `feature_bag_fraction`::::
  473. (double)
  474. The fraction of features that is used when selecting a random bag for each
  475. candidate split.
  476. end::dfas-feature-bag-fraction[]
  477. tag::dfas-gamma[]
  478. `gamma`::::
  479. (double)
  480. Regularization factor to penalize trees with large numbers of nodes.
  481. end::dfas-gamma[]
  482. tag::dfas-lambda[]
  483. `lambda`::::
  484. (double)
  485. Regularization factor to penalize large leaf weights.
  486. end::dfas-lambda[]
  487. tag::dfas-max-attempts[]
  488. `max_attempts_to_add_tree`::::
  489. (integer)
  490. If the algorithm fails to determine a non-trivial tree (more than a single
  491. leaf), this parameter determines how many of such consecutive failures are
  492. tolerated. Once the number of attempts exceeds the threshold, the forest
  493. training stops.
  494. end::dfas-max-attempts[]
  495. tag::dfas-max-optimization-rounds[]
  496. `max_optimization_rounds_per_hyperparameter`::::
  497. (integer)
  498. A multiplier responsible for determining the maximum number of
  499. hyperparameter optimization steps in the Bayesian optimization procedure.
  500. The maximum number of steps is determined based on the number of undefined hyperparameters
  501. times the maximum optimization rounds per hyperparameter.
  502. end::dfas-max-optimization-rounds[]
  503. tag::dfas-max-trees[]
  504. `max_trees`::::
  505. (integer)
  506. The maximum number of trees in the forest.
  507. end::dfas-max-trees[]
  508. tag::dfas-num-folds[]
  509. `num_folds`::::
  510. (integer)
  511. The maximum number of folds for the cross-validation procedure.
  512. end::dfas-num-folds[]
  513. tag::dfas-num-splits[]
  514. `num_splits_per_feature`::::
  515. (integer)
  516. Determines the maximum number of splits for every feature that can occur in a
  517. decision tree when the tree is trained.
  518. end::dfas-num-splits[]
  519. tag::dfas-soft-limit[]
  520. `soft_tree_depth_limit`::::
  521. (double)
  522. Tree depth limit is used for calculating the tree depth penalty. This is a soft
  523. limit, it can be exceeded.
  524. end::dfas-soft-limit[]
  525. tag::dfas-soft-tolerance[]
  526. `soft_tree_depth_tolerance`::::
  527. (double)
  528. Tree depth tolerance is used for calculating the tree depth penalty. This is a
  529. soft limit, it can be exceeded.
  530. end::dfas-soft-tolerance[]
  531. ======
  532. //End class_hyperparameters
  533. tag::dfas-iteration[]
  534. `iteration`::::
  535. (integer)
  536. The number of iterations on the analysis.
  537. end::dfas-iteration[]
  538. tag::dfas-timestamp[]
  539. `timestamp`::::
  540. (date)
  541. The timestamp when the statistics were reported in milliseconds since the epoch.
  542. end::dfas-timestamp[]
  543. //Begin class_timing_stats
  544. tag::dfas-timing-stats[]
  545. `timing_stats`::::
  546. (object)
  547. An object containing time statistics about the {dfanalytics-job}.
  548. end::dfas-timing-stats[]
  549. +
  550. .Properties of `timing_stats`
  551. [%collapsible%open]
  552. ======
  553. tag::dfas-timing-stats-elapsed[]
  554. `elapsed_time`::::
  555. (integer)
  556. Runtime of the analysis in milliseconds.
  557. end::dfas-timing-stats-elapsed[]
  558. tag::dfas-timing-stats-iteration[]
  559. `iteration_time`::::
  560. (integer)
  561. Runtime of the latest iteration of the analysis in milliseconds.
  562. end::dfas-timing-stats-iteration[]
  563. ======
  564. //End class_timing_stats
  565. //Begin class_validation_loss
  566. tag::dfas-validation-loss[]
  567. `validation_loss`::::
  568. (object)
  569. An object containing information about validation loss.
  570. end::dfas-validation-loss[]
  571. +
  572. .Properties of `validation_loss`
  573. [%collapsible%open]
  574. ======
  575. tag::dfas-validation-loss-type[]
  576. `loss_type`::::
  577. (string)
  578. The type of the loss metric. For example, `binomial_logistic`.
  579. end::dfas-validation-loss-type[]
  580. tag::dfas-validation-loss-fold[]
  581. `fold_values`::::
  582. (array of strings)
  583. Validation loss values for every added decision tree during the forest growing
  584. procedure.
  585. end::dfas-validation-loss-fold[]
  586. ======
  587. //End class_validation_loss
  588. =====
  589. //End classification_stats
  590. //Begin outlier_detection_stats
  591. `outlier_detection_stats`:::
  592. (object)
  593. An object containing statistical data about the {oldetection} job.
  594. +
  595. .Properties of `outlier_detection_stats`
  596. [%collapsible%open]
  597. =====
  598. //Begin parameters
  599. `parameters`::::
  600. (object)
  601. The list of job parameters specified by the user or determined by algorithmic
  602. heuristics.
  603. +
  604. .Properties of `parameters`
  605. [%collapsible%open]
  606. ======
  607. `compute_feature_influence`::::
  608. (boolean)
  609. If true, feature influence calculation is enabled.
  610. `feature_influence_threshold`::::
  611. (double)
  612. The minimum {olscore} that a document needs to have to calculate its feature
  613. influence score.
  614. `method`::::
  615. (string)
  616. The method that {oldetection} uses. Possible values are `lof`, `ldof`,
  617. `distance_kth_nn`, `distance_knn`, and `ensemble`.
  618. `n_neighbors`::::
  619. (integer)
  620. The value for how many nearest neighbors each method of {oldetection} uses to
  621. calculate its outlier score.
  622. `outlier_fraction`::::
  623. (double)
  624. The proportion of the data set that is assumed to be outlying prior to
  625. {oldetection}.
  626. `standardization_enabled`::::
  627. (boolean)
  628. If true, then the following operation is performed on the columns before
  629. computing {olscores}: (x_i - mean(x_i)) / sd(x_i).
  630. ======
  631. //End parameters
  632. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
  633. //Begin od_timing_stats
  634. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
  635. +
  636. .Property of `timing_stats`
  637. [%collapsible%open]
  638. ======
  639. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
  640. ======
  641. //End od_timing_stats
  642. =====
  643. //End outlier_detection_stats
  644. //Begin regression_stats
  645. `regression_stats`:::
  646. (object)
  647. An object containing statistical data about the {reganalysis}.
  648. +
  649. .Properties of `regression_stats`
  650. [%collapsible%open]
  651. =====
  652. //Begin reg_hyperparameters
  653. `hyperparameters`::::
  654. (object)
  655. An object containing the parameters of the {reganalysis}.
  656. +
  657. .Properties of `hyperparameters`
  658. [%collapsible%open]
  659. ======
  660. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-alpha]
  661. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-downsample-factor]
  662. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta]
  663. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-eta-growth]
  664. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-feature-bag-fraction]
  665. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-gamma]
  666. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-lambda]
  667. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-attempts]
  668. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-optimization-rounds]
  669. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-max-trees]
  670. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-folds]
  671. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-num-splits]
  672. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-limit]
  673. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-soft-tolerance]
  674. ======
  675. //End reg_hyperparameters
  676. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-iteration]
  677. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timestamp]
  678. //Begin reg_timing_stats
  679. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats]
  680. +
  681. .Propertis of `timing_stats`
  682. [%collapsible%open]
  683. ======
  684. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-elapsed]
  685. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-timing-stats-iteration]
  686. ======
  687. //End reg_timing_stats
  688. //Begin reg_validation_loss
  689. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss]
  690. +
  691. .Properties of `validation_loss`
  692. [%collapsible%open]
  693. ======
  694. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-type]
  695. include::{docdir}/ml/ml-shared.asciidoc[tag=dfas-validation-loss-fold]
  696. ======
  697. //End reg_validation_loss
  698. =====
  699. //End regression_stats
  700. ====
  701. //End analysis_stats
  702. `assignment_explanation`:::
  703. (string)
  704. For running jobs only, contains messages relating to the selection of a node to
  705. run the job.
  706. //Begin data_counts
  707. `data_counts`:::
  708. (object)
  709. An object containing statistical data about the documents in the analysis.
  710. +
  711. .Properties of `data_counts`
  712. [%collapsible%open]
  713. ====
  714. `skipped_docs_count`:::
  715. (integer)
  716. The number of documents that are skipped during the analysis because they
  717. contained values that are not supported by the analysis. For example,
  718. {oldetection} does not support missing fields so it skips documents with missing
  719. fields. Likewise, all types of analysis skip documents that contain arrays with
  720. more than one element.
  721. `test_docs_count`:::
  722. (integer)
  723. The number of documents that are not used for training the model and can be used
  724. for testing.
  725. `training_docs_count`:::
  726. (integer)
  727. The number of documents that are used for training the model.
  728. ====
  729. //End data_counts
  730. `id`:::
  731. (string)
  732. The unique identifier of the {dfanalytics-job}.
  733. `memory_usage`:::
  734. (Optional, object)
  735. An object describing memory usage of the analytics. It is present only after the
  736. job is started and memory usage is reported.
  737. `memory_usage`.`peak_usage_bytes`:::
  738. (long)
  739. The number of bytes used at the highest peak of memory usage.
  740. `memory_usage`.`timestamp`:::
  741. (date)
  742. The timestamp when memory usage was calculated.
  743. `node`:::
  744. (object)
  745. Contains properties for the node that runs the job. This information is
  746. available only for running jobs.
  747. `node`.`attributes`:::
  748. (object)
  749. Lists node attributes such as `ml.machine_memory`, `ml.max_open_jobs`, and
  750. `xpack.installed`.
  751. `node`.`ephemeral_id`:::
  752. (string)
  753. The ephemeral id of the node.
  754. `node`.`id`:::
  755. (string)
  756. The unique identifier of the node.
  757. `node`.`name`:::
  758. (string)
  759. The node name.
  760. `node`.`transport_address`:::
  761. (string)
  762. The host and port where transport HTTP connections are accepted.
  763. `progress`:::
  764. (array) The progress report of the {dfanalytics-job} by phase.
  765. `progress`.`phase`:::
  766. (string) Defines the phase of the {dfanalytics-job}. Possible phases:
  767. `reindexing`, `loading_data`, `analyzing`, and `writing_results`.
  768. `progress`.`progress_percent`:::
  769. (integer) The progress that the {dfanalytics-job} has made expressed in
  770. percentage.
  771. `state`:::
  772. (string) Current state of the {dfanalytics-job}.
  773. end::data-frame-analytics-stats[]
  774. tag::datafeed-id[]
  775. A numerical character string that uniquely identifies the
  776. {dfeed}. This identifier can contain lowercase alphanumeric characters (a-z
  777. and 0-9), hyphens, and underscores. It must start and end with alphanumeric
  778. characters.
  779. end::datafeed-id[]
  780. tag::datafeed-id-wildcard[]
  781. Identifier for the {dfeed}. It can be a {dfeed} identifier or a wildcard
  782. expression.
  783. end::datafeed-id-wildcard[]
  784. tag::dead-category-count[]
  785. The number of categories created by categorization that will never be assigned
  786. again because another category's definition makes it a superset of the dead
  787. category. (Dead categories are a side effect of the way categorization has no
  788. prior training.)
  789. end::dead-category-count[]
  790. tag::decompress-definition[]
  791. Specifies whether the included model definition should be returned as a JSON map
  792. (`true`) or in a custom compressed format (`false`). Defaults to `true`.
  793. end::decompress-definition[]
  794. tag::delayed-data-check-config[]
  795. Specifies whether the {dfeed} checks for missing data and the size of the
  796. window. For example: `{"enabled": true, "check_window": "1h"}`.
  797. +
  798. The {dfeed} can optionally search over indices that have already been read in
  799. an effort to determine whether any data has subsequently been added to the
  800. index. If missing data is found, it is a good indication that the `query_delay`
  801. option is set too low and the data is being indexed after the {dfeed} has passed
  802. that moment in time. See
  803. {ml-docs}/ml-delayed-data-detection.html[Working with delayed data].
  804. +
  805. This check runs only on real-time {dfeeds}.
  806. +
  807. .Properties of `delayed_data_check_config`
  808. [%collapsible%open]
  809. ====
  810. `check_window`::
  811. (<<time-units,time units>>) The window of time that is searched for late data.
  812. This window of time ends with the latest finalized bucket. It defaults to
  813. `null`, which causes an appropriate `check_window` to be calculated when the
  814. real-time {dfeed} runs. In particular, the default `check_window` span
  815. calculation is based on the maximum of `2h` or `8 * bucket_span`.
  816. `enabled`::
  817. (boolean) Specifies whether the {dfeed} periodically checks for delayed data.
  818. Defaults to `true`.
  819. ====
  820. end::delayed-data-check-config[]
  821. tag::dependent-variable[]
  822. Defines which field of the document is to be predicted.
  823. This parameter is supplied by field name and must match one of the fields in
  824. the index being used to train. If this field is missing from a document, then
  825. that document will not be used for training, but a prediction with the trained
  826. model will be generated for it. It is also known as continuous target variable.
  827. end::dependent-variable[]
  828. tag::desc-results[]
  829. If true, the results are sorted in descending order.
  830. end::desc-results[]
  831. tag::description-dfa[]
  832. A description of the job.
  833. end::description-dfa[]
  834. tag::dest[]
  835. The destination configuration, consisting of `index` and optionally
  836. `results_field` (`ml` by default).
  837. +
  838. .Properties of `dest`
  839. [%collapsible%open]
  840. ====
  841. `index`:::
  842. (Required, string) Defines the _destination index_ to store the results of the
  843. {dfanalytics-job}.
  844. `results_field`:::
  845. (Optional, string) Defines the name of the field in which to store the results
  846. of the analysis. Defaults to `ml`.
  847. ====
  848. end::dest[]
  849. tag::detector-description[]
  850. A description of the detector. For example, `Low event rate`.
  851. end::detector-description[]
  852. tag::detector-field-name[]
  853. The field that the detector uses in the function. If you use an event rate
  854. function such as `count` or `rare`, do not specify this field.
  855. +
  856. --
  857. NOTE: The `field_name` cannot contain double quotes or backslashes.
  858. --
  859. end::detector-field-name[]
  860. tag::detector-index[]
  861. A unique identifier for the detector. This identifier is based on the order of
  862. the detectors in the `analysis_config`, starting at zero.
  863. end::detector-index[]
  864. tag::earliest-record-timestamp[]
  865. The timestamp of the earliest chronologically input document.
  866. end::earliest-record-timestamp[]
  867. tag::empty-bucket-count[]
  868. The number of buckets which did not contain any data. If your data
  869. contains many empty buckets, consider increasing your `bucket_span` or using
  870. functions that are tolerant to gaps in data such as `mean`, `non_null_sum` or
  871. `non_zero_count`.
  872. end::empty-bucket-count[]
  873. tag::eta[]
  874. Advanced configuration option. The shrinkage applied to the weights. Smaller
  875. values result in larger forests which have better generalization error. However,
  876. the smaller the value the longer the training will take. For more information
  877. about shrinkage, see
  878. https://en.wikipedia.org/wiki/Gradient_boosting#Shrinkage[this wiki article].
  879. end::eta[]
  880. tag::exclude-frequent[]
  881. Contains one of the following values: `all`, `none`, `by`, or `over`. If set,
  882. frequent entities are excluded from influencing the anomaly results. Entities
  883. can be considered frequent over time or frequent in a population. If you are
  884. working with both over and by fields, then you can set `exclude_frequent` to
  885. `all` for both fields, or to `by` or `over` for those specific fields.
  886. end::exclude-frequent[]
  887. tag::exclude-interim-results[]
  888. If `true`, the output excludes interim results. By default, interim results are
  889. included.
  890. end::exclude-interim-results[]
  891. tag::feature-bag-fraction[]
  892. Advanced configuration option. Defines the fraction of features that will be
  893. used when selecting a random bag for each candidate split.
  894. end::feature-bag-fraction[]
  895. tag::feature-influence-threshold[]
  896. The minimum {olscore} that a document needs to have in order to calculate its
  897. {fiscore}. Value range: 0-1 (`0.1` by default).
  898. end::feature-influence-threshold[]
  899. tag::field-selection[]
  900. An array of objects that explain selection for each field, sorted by
  901. the field names.
  902. +
  903. .Properties of `field_selection` objects
  904. [%collapsible%open]
  905. ====
  906. `is_included`:::
  907. (boolean) Whether the field is selected to be included in the analysis.
  908. `is_required`:::
  909. (boolean) Whether the field is required.
  910. `feature_type`:::
  911. (string) The feature type of this field for the analysis. May be `categorical`
  912. or `numerical`.
  913. `mapping_types`:::
  914. (string) The mapping types of the field.
  915. `name`:::
  916. (string) The field name.
  917. `reason`:::
  918. (string) The reason a field is not selected to be included in the analysis.
  919. ====
  920. end::field-selection[]
  921. tag::filter[]
  922. One or more <<analysis-tokenfilters,token filters>>. In addition to the built-in
  923. token filters, other plugins can provide more token filters. This property is
  924. optional. If it is not specified, no token filters are applied prior to
  925. categorization.
  926. end::filter[]
  927. tag::filter-id[]
  928. A string that uniquely identifies a filter.
  929. end::filter-id[]
  930. tag::forecast-total[]
  931. The number of individual forecasts currently available for the job. A value of
  932. `1` or more indicates that forecasts exist.
  933. end::forecast-total[]
  934. tag::frequency[]
  935. The interval at which scheduled queries are made while the {dfeed} runs in real
  936. time. The default value is either the bucket span for short bucket spans, or,
  937. for longer bucket spans, a sensible fraction of the bucket span. For example:
  938. `150s`. When `frequency` is shorter than the bucket span, interim results for
  939. the last (partial) bucket are written then eventually overwritten by the full
  940. bucket results. If the {dfeed} uses aggregations, this value must be divisible
  941. by the interval of the date histogram aggregation.
  942. end::frequency[]
  943. tag::frequent-category-count[]
  944. The number of categories that match more than 1% of categorized documents.
  945. end::frequent-category-count[]
  946. tag::from[]
  947. Skips the specified number of {dfanalytics-jobs}. The default value is `0`.
  948. end::from[]
  949. tag::function[]
  950. The analysis function that is used. For example, `count`, `rare`, `mean`, `min`,
  951. `max`, and `sum`. For more information, see
  952. {ml-docs}/ml-functions.html[Function reference].
  953. end::function[]
  954. tag::gamma[]
  955. Advanced configuration option. Regularization parameter to prevent overfitting
  956. on the training dataset. Multiplies a linear penalty associated with the size of
  957. individual trees in the forest. The higher the value the more training will
  958. prefer smaller trees. The smaller this parameter the larger individual trees
  959. will be and the longer train will take.
  960. end::gamma[]
  961. tag::groups[]
  962. A list of job groups. A job can belong to no groups or many.
  963. end::groups[]
  964. tag::include-model-definition[]
  965. Specifies if the model definition should be returned in the response. Defaults
  966. to `false`. When `true`, only a single model must match the ID patterns
  967. provided, otherwise a bad request is returned.
  968. end::include-model-definition[]
  969. tag::indices[]
  970. An array of index names. Wildcards are supported. For example:
  971. `["it_ops_metrics", "server*"]`.
  972. +
  973. --
  974. NOTE: If any indices are in remote clusters then `node.remote_cluster_client`
  975. must not be set to `false` on any {ml} nodes.
  976. --
  977. end::indices[]
  978. tag::indices-options[]
  979. Specifies index expansion options that are used during search.
  980. +
  981. --
  982. For example:
  983. ```
  984. {
  985. "expand_wildcards": ["all"],
  986. "ignore_unavailable": true,
  987. "allow_no_indices": "false",
  988. "ignore_throttled": true
  989. }
  990. ```
  991. For more information about these options, see <<multi-index>>.
  992. --
  993. end::indices-options[]
  994. tag::inference-config-classification-num-top-classes[]
  995. Specifies the number of top class predictions to return. Defaults to 0.
  996. end::inference-config-classification-num-top-classes[]
  997. tag::inference-config-classification-num-top-feature-importance-values[]
  998. Specifies the maximum number of
  999. {ml-docs}/dfa-classification.html#dfa-classification-feature-importance[feature
  1000. importance] values per document. By default, it is zero and no feature
  1001. importance calculation occurs.
  1002. end::inference-config-classification-num-top-feature-importance-values[]
  1003. tag::inference-config-classification-top-classes-results-field[]
  1004. Specifies the field to which the top classes are written. Defaults to
  1005. `top_classes`.
  1006. end::inference-config-classification-top-classes-results-field[]
  1007. tag::inference-config-regression-num-top-feature-importance-values[]
  1008. Specifies the maximum number of
  1009. {ml-docs}/dfa-regression.html#dfa-regression-feature-importance[feature
  1010. importance] values per document. By default, it is zero and no feature importance
  1011. calculation occurs.
  1012. end::inference-config-regression-num-top-feature-importance-values[]
  1013. tag::inference-config-results-field[]
  1014. The field that is added to incoming documents to contain the inference
  1015. prediction. Defaults to `predicted_value`.
  1016. end::inference-config-results-field[]
  1017. tag::influencers[]
  1018. A comma separated list of influencer field names. Typically these can be the by,
  1019. over, or partition fields that are used in the detector configuration. You might
  1020. also want to use a field name that is not specifically named in a detector, but
  1021. is available as part of the input data. When you use multiple detectors, the use
  1022. of influencers is recommended as it aggregates results for each influencer
  1023. entity.
  1024. end::influencers[]
  1025. tag::input-bytes[]
  1026. The number of bytes of input data posted to the {anomaly-job}.
  1027. end::input-bytes[]
  1028. tag::input-field-count[]
  1029. The total number of fields in input documents posted to the {anomaly-job}. This
  1030. count includes fields that are not used in the analysis. However, be aware that
  1031. if you are using a {dfeed}, it extracts only the required fields from the
  1032. documents it retrieves before posting them to the job.
  1033. end::input-field-count[]
  1034. tag::input-record-count[]
  1035. The number of input documents posted to the {anomaly-job}.
  1036. end::input-record-count[]
  1037. tag::invalid-date-count[]
  1038. The number of input documents with either a missing date field or a date that
  1039. could not be parsed.
  1040. end::invalid-date-count[]
  1041. tag::is-interim[]
  1042. If `true`, this is an interim result. In other words, the results are calculated
  1043. based on partial input data.
  1044. end::is-interim[]
  1045. tag::job-id-anomaly-detection[]
  1046. Identifier for the {anomaly-job}.
  1047. end::job-id-anomaly-detection[]
  1048. tag::job-id-data-frame-analytics[]
  1049. Identifier for the {dfanalytics-job}.
  1050. end::job-id-data-frame-analytics[]
  1051. tag::job-id-anomaly-detection-default[]
  1052. Identifier for the {anomaly-job}. It can be a job identifier, a group name, or a
  1053. wildcard expression. If you do not specify one of these options, the API returns
  1054. information for all {anomaly-jobs}.
  1055. end::job-id-anomaly-detection-default[]
  1056. tag::job-id-data-frame-analytics-default[]
  1057. Identifier for the {dfanalytics-job}. If you do not specify this option, the API
  1058. returns information for the first hundred {dfanalytics-jobs}.
  1059. end::job-id-data-frame-analytics-default[]
  1060. tag::job-id-anomaly-detection-list[]
  1061. An identifier for the {anomaly-jobs}. It can be a job
  1062. identifier, a group name, or a comma-separated list of jobs or groups.
  1063. end::job-id-anomaly-detection-list[]
  1064. tag::job-id-anomaly-detection-wildcard[]
  1065. Identifier for the {anomaly-job}. It can be a job identifier, a group name, or a
  1066. wildcard expression.
  1067. end::job-id-anomaly-detection-wildcard[]
  1068. tag::job-id-anomaly-detection-wildcard-list[]
  1069. Identifier for the {anomaly-job}. It can be a job identifier, a group name, a
  1070. comma-separated list of jobs or groups, or a wildcard expression.
  1071. end::job-id-anomaly-detection-wildcard-list[]
  1072. tag::job-id-anomaly-detection-define[]
  1073. Identifier for the {anomaly-job}. This identifier can contain lowercase
  1074. alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start
  1075. and end with alphanumeric characters.
  1076. end::job-id-anomaly-detection-define[]
  1077. tag::job-id-data-frame-analytics-define[]
  1078. Identifier for the {dfanalytics-job}. This identifier can contain lowercase
  1079. alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start
  1080. and end with alphanumeric characters.
  1081. end::job-id-data-frame-analytics-define[]
  1082. tag::job-id-datafeed[]
  1083. The unique identifier for the job to which the {dfeed} sends data.
  1084. end::job-id-datafeed[]
  1085. tag::lambda[]
  1086. Advanced configuration option. Regularization parameter to prevent overfitting
  1087. on the training dataset. Multiplies an L2 regularisation term which applies to
  1088. leaf weights of the individual trees in the forest. The higher the value the
  1089. more training will attempt to keep leaf weights small. This makes the prediction
  1090. function smoother at the expense of potentially not being able to capture
  1091. relevant relationships between the features and the {depvar}. The smaller this
  1092. parameter the larger individual trees will be and the longer train will take.
  1093. end::lambda[]
  1094. tag::last-data-time[]
  1095. The timestamp at which data was last analyzed, according to server time.
  1096. end::last-data-time[]
  1097. tag::latency[]
  1098. The size of the window in which to expect data that is out of time order. The
  1099. default value is 0 (no latency). If you specify a non-zero value, it must be
  1100. greater than or equal to one second. For more information about time units, see
  1101. <<time-units>>.
  1102. +
  1103. --
  1104. NOTE: Latency is only applicable when you send data by using
  1105. the <<ml-post-data,post data>> API.
  1106. --
  1107. end::latency[]
  1108. tag::latest-empty-bucket-timestamp[]
  1109. The timestamp of the last bucket that did not contain any data.
  1110. end::latest-empty-bucket-timestamp[]
  1111. tag::latest-record-timestamp[]
  1112. The timestamp of the latest chronologically input document.
  1113. end::latest-record-timestamp[]
  1114. tag::latest-sparse-record-timestamp[]
  1115. The timestamp of the last bucket that was considered sparse.
  1116. end::latest-sparse-record-timestamp[]
  1117. tag::max-empty-searches[]
  1118. If a real-time {dfeed} has never seen any data (including during any initial
  1119. training period) then it will automatically stop itself and close its associated
  1120. job after this many real-time searches that return no documents. In other words,
  1121. it will stop after `frequency` times `max_empty_searches` of real-time
  1122. operation. If not set then a {dfeed} with no end time that sees no data will
  1123. remain started until it is explicitly stopped. By default this setting is not
  1124. set.
  1125. end::max-empty-searches[]
  1126. tag::max-trees[]
  1127. Advanced configuration option. Defines the maximum number of trees the forest is
  1128. allowed to contain. The maximum value is 2000.
  1129. end::max-trees[]
  1130. tag::memory-estimation[]
  1131. An object containing the memory estimates.
  1132. +
  1133. .Properties of `memory_estimation`
  1134. [%collapsible%open]
  1135. ====
  1136. `expected_memory_with_disk`:::
  1137. (string) Estimated memory usage under the assumption that overflowing to disk is
  1138. allowed during {dfanalytics}. `expected_memory_with_disk` is usually smaller
  1139. than `expected_memory_without_disk` as using disk allows to limit the main
  1140. memory needed to perform {dfanalytics}.
  1141. `expected_memory_without_disk`:::
  1142. (string) Estimated memory usage under the assumption that the whole
  1143. {dfanalytics} should happen in memory (i.e. without overflowing to disk).
  1144. ====
  1145. end::memory-estimation[]
  1146. tag::method[]
  1147. Sets the method that {oldetection} uses. If the method is not set {oldetection}
  1148. uses an ensemble of different methods and normalises and combines their
  1149. individual {olscores} to obtain the overall {olscore}. We recommend to use the
  1150. ensemble method. Available methods are `lof`, `ldof`, `distance_kth_nn`,
  1151. `distance_knn`.
  1152. end::method[]
  1153. tag::missing-field-count[]
  1154. The number of input documents that are missing a field that the {anomaly-job} is
  1155. configured to analyze. Input documents with missing fields are still processed
  1156. because it is possible that not all fields are missing.
  1157. +
  1158. --
  1159. NOTE: If you are using {dfeeds} or posting data to the job in JSON format, a
  1160. high `missing_field_count` is often not an indication of data issues. It is not
  1161. necessarily a cause for concern.
  1162. --
  1163. end::missing-field-count[]
  1164. tag::mode[]
  1165. There are three available modes:
  1166. +
  1167. --
  1168. * `auto`: The chunk size is dynamically calculated. This is the default and
  1169. recommended value.
  1170. * `manual`: Chunking is applied according to the specified `time_span`.
  1171. * `off`: No chunking is applied.
  1172. --
  1173. end::mode[]
  1174. tag::model-bytes[]
  1175. The number of bytes of memory used by the models. This is the maximum value
  1176. since the last time the model was persisted. If the job is closed, this value
  1177. indicates the latest size.
  1178. end::model-bytes[]
  1179. tag::model-bytes-exceeded[]
  1180. The number of bytes over the high limit for memory usage at the last allocation
  1181. failure.
  1182. end::model-bytes-exceeded[]
  1183. tag::model-id[]
  1184. The unique identifier of the trained {infer} model.
  1185. end::model-id[]
  1186. tag::model-memory-limit[]
  1187. The approximate maximum amount of memory resources that are required for
  1188. analytical processing. Once this limit is approached, data pruning becomes
  1189. more aggressive. Upon exceeding this limit, new entities are not modeled. The
  1190. default value for jobs created in version 6.1 and later is `1024mb`.
  1191. This value will need to be increased for jobs that are expected to analyze high
  1192. cardinality fields, but the default is set to a relatively small size to ensure
  1193. that high resource usage is a conscious decision. The default value for jobs
  1194. created in versions earlier than 6.1 is `4096mb`.
  1195. +
  1196. If you specify a number instead of a string, the units are assumed to be MiB.
  1197. Specifying a string is recommended for clarity. If you specify a byte size unit
  1198. of `b` or `kb` and the number does not equate to a discrete number of megabytes,
  1199. it is rounded down to the closest MiB. The minimum valid value is 1 MiB. If you
  1200. specify a value less than 1 MiB, an error occurs. For more information about
  1201. supported byte size units, see <<byte-units>>.
  1202. +
  1203. If your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit`
  1204. setting, an error occurs when you try to create jobs that have
  1205. `model_memory_limit` values greater than that setting. For more information,
  1206. see <<ml-settings>>.
  1207. end::model-memory-limit[]
  1208. tag::model-memory-limit-anomaly-jobs[]
  1209. The upper limit for model memory usage, checked on increasing values.
  1210. end::model-memory-limit-anomaly-jobs[]
  1211. tag::model-memory-limit-dfa[]
  1212. The approximate maximum amount of memory resources that are permitted for
  1213. analytical processing. The default value for {dfanalytics-jobs} is `1gb`. If
  1214. your `elasticsearch.yml` file contains an `xpack.ml.max_model_memory_limit`
  1215. setting, an error occurs when you try to create {dfanalytics-jobs} that have
  1216. `model_memory_limit` values greater than that setting. For more information, see
  1217. <<ml-settings>>.
  1218. end::model-memory-limit-dfa[]
  1219. tag::model-memory-status[]
  1220. The status of the mathematical models, which can have one of the following
  1221. values:
  1222. +
  1223. --
  1224. * `ok`: The models stayed below the configured value.
  1225. * `soft_limit`: The models used more than 60% of the configured memory limit
  1226. and older unused models will be pruned to free up space.
  1227. * `hard_limit`: The models used more space than the configured memory limit.
  1228. As a result, not all incoming data was processed.
  1229. --
  1230. end::model-memory-status[]
  1231. tag::model-plot-config[]
  1232. This advanced configuration option stores model information along with the
  1233. results. It provides a more detailed view into {anomaly-detect}.
  1234. +
  1235. --
  1236. WARNING: If you enable model plot it can add considerable overhead to the
  1237. performance of the system; it is not feasible for jobs with many entities.
  1238. Model plot provides a simplified and indicative view of the model and its
  1239. bounds. It does not display complex features such as multivariate correlations
  1240. or multimodal data. As such, anomalies may occasionally be reported which cannot
  1241. be seen in the model plot.
  1242. Model plot config can be configured when the job is created or updated later. It
  1243. must be disabled if performance issues are experienced.
  1244. --
  1245. end::model-plot-config[]
  1246. tag::model-plot-config-enabled[]
  1247. If true, enables calculation and storage of the model bounds for each entity
  1248. that is being analyzed. By default, this is not enabled.
  1249. end::model-plot-config-enabled[]
  1250. tag::model-plot-config-terms[]
  1251. Limits data collection to this comma separated list of partition or by field
  1252. values. If terms are not specified or it is an empty string, no filtering is
  1253. applied. For example, "CPU,NetworkIn,DiskWrites". Wildcards are not supported.
  1254. Only the specified `terms` can be viewed when using the Single Metric Viewer.
  1255. end::model-plot-config-terms[]
  1256. tag::model-snapshot-id[]
  1257. A numerical character string that uniquely identifies the model snapshot. For
  1258. example, `1575402236000 `.
  1259. end::model-snapshot-id[]
  1260. tag::model-snapshot-retention-days[]
  1261. Advanced configuration option. The period of time (in days) that model snapshots
  1262. are retained. Age is calculated relative to the timestamp of the newest model
  1263. snapshot. The default value is `1`, which means snapshots that are one day
  1264. (twenty-four hours) older than the newest snapshot are deleted.
  1265. end::model-snapshot-retention-days[]
  1266. tag::model-timestamp[]
  1267. The timestamp of the last record when the model stats were gathered.
  1268. end::model-timestamp[]
  1269. tag::multivariate-by-fields[]
  1270. This functionality is reserved for internal use. It is not supported for use in
  1271. customer environments and is not subject to the support SLA of official GA
  1272. features.
  1273. +
  1274. --
  1275. If set to `true`, the analysis will automatically find correlations between
  1276. metrics for a given `by` field value and report anomalies when those
  1277. correlations cease to hold. For example, suppose CPU and memory usage on host A
  1278. is usually highly correlated with the same metrics on host B. Perhaps this
  1279. correlation occurs because they are running a load-balanced application.
  1280. If you enable this property, then anomalies will be reported when, for example,
  1281. CPU usage on host A is high and the value of CPU usage on host B is low. That
  1282. is to say, you'll see an anomaly when the CPU of host A is unusual given
  1283. the CPU of host B.
  1284. NOTE: To use the `multivariate_by_fields` property, you must also specify
  1285. `by_field_name` in your detector.
  1286. --
  1287. end::multivariate-by-fields[]
  1288. tag::n-neighbors[]
  1289. Defines the value for how many nearest neighbors each method of
  1290. {oldetection} will use to calculate its {olscore}. When the value is not set,
  1291. different values will be used for different ensemble members. This helps
  1292. improve diversity in the ensemble. Therefore, only override this if you are
  1293. confident that the value you choose is appropriate for the data set.
  1294. end::n-neighbors[]
  1295. tag::node-address[]
  1296. The network address of the node.
  1297. end::node-address[]
  1298. tag::node-datafeeds[]
  1299. For started {dfeeds} only, this information pertains to the node upon which the
  1300. {dfeed} is started.
  1301. end::node-datafeeds[]
  1302. tag::node-ephemeral-id[]
  1303. The ephemeral ID of the node.
  1304. end::node-ephemeral-id[]
  1305. tag::node-id[]
  1306. The unique identifier of the node.
  1307. end::node-id[]
  1308. tag::node-jobs[]
  1309. Contains properties for the node that runs the job. This information is
  1310. available only for open jobs.
  1311. end::node-jobs[]
  1312. tag::num-top-classes[]
  1313. Defines the number of categories for which the predicted
  1314. probabilities are reported. It must be non-negative. If it is greater than the
  1315. total number of categories (in the {version} version of the {stack}, it's two)
  1316. to predict then we will report all category probabilities. Defaults to 2.
  1317. end::num-top-classes[]
  1318. tag::open-time[]
  1319. For open jobs only, the elapsed time for which the job has been open.
  1320. end::open-time[]
  1321. tag::out-of-order-timestamp-count[]
  1322. The number of input documents that are out of time sequence and outside
  1323. of the latency window. This information is applicable only when you provide data
  1324. to the {anomaly-job} by using the <<ml-post-data,post data API>>. These out of
  1325. order documents are discarded, since jobs require time series data to be in
  1326. ascending chronological order.
  1327. end::out-of-order-timestamp-count[]
  1328. tag::outlier-fraction[]
  1329. Sets the proportion of the data set that is assumed to be outlying prior to
  1330. {oldetection}. For example, 0.05 means it is assumed that 5% of values are real
  1331. outliers and 95% are inliers.
  1332. end::outlier-fraction[]
  1333. tag::over-field-name[]
  1334. The field used to split the data. In particular, this property is used for
  1335. analyzing the splits with respect to the history of all splits. It is used for
  1336. finding unusual values in the population of all splits. For more information,
  1337. see {ml-docs}/ml-configuring-pop.html[Performing population analysis].
  1338. end::over-field-name[]
  1339. tag::partition-field-name[]
  1340. The field used to segment the analysis. When you use this property, you have
  1341. completely independent baselines for each value of this field.
  1342. end::partition-field-name[]
  1343. tag::prediction-field-name[]
  1344. Defines the name of the prediction field in the results.
  1345. Defaults to `<dependent_variable>_prediction`.
  1346. end::prediction-field-name[]
  1347. tag::processed-field-count[]
  1348. The total number of fields in all the documents that have been processed by the
  1349. {anomaly-job}. Only fields that are specified in the detector configuration
  1350. object contribute to this count. The timestamp is not included in this count.
  1351. end::processed-field-count[]
  1352. tag::processed-record-count[]
  1353. The number of input documents that have been processed by the {anomaly-job}.
  1354. This value includes documents with missing fields, since they are nonetheless
  1355. analyzed. If you use {dfeeds} and have aggregations in your search query, the
  1356. `processed_record_count` is the number of aggregation results processed, not the
  1357. number of {es} documents.
  1358. end::processed-record-count[]
  1359. tag::randomize-seed[]
  1360. Defines the seed to the random generator that is used to pick which documents
  1361. will be used for training. By default it is randomly generated. Set it to a
  1362. specific value to ensure the same documents are used for training assuming other
  1363. related parameters (for example, `source`, `analyzed_fields`, etc.) are the
  1364. same.
  1365. end::randomize-seed[]
  1366. tag::query[]
  1367. The {es} query domain-specific language (DSL). This value corresponds to the
  1368. query object in an {es} search POST body. All the options that are supported by
  1369. {es} can be used, as this object is passed verbatim to {es}. By default, this
  1370. property has the following value: `{"match_all": {"boost": 1}}`.
  1371. end::query[]
  1372. tag::query-delay[]
  1373. The number of seconds behind real time that data is queried. For example, if
  1374. data from 10:04 a.m. might not be searchable in {es} until 10:06 a.m., set this
  1375. property to 120 seconds. The default value is randomly selected between `60s`
  1376. and `120s`. This randomness improves the query performance when there are
  1377. multiple jobs running on the same node. For more information, see
  1378. {ml-docs}/ml-delayed-data-detection.html[Handling delayed data].
  1379. end::query-delay[]
  1380. tag::rare-category-count[]
  1381. The number of categories that match just one categorized document.
  1382. end::rare-category-count[]
  1383. tag::renormalization-window-days[]
  1384. Advanced configuration option. The period over which adjustments to the score
  1385. are applied, as new data is seen. The default value is the longer of 30 days or
  1386. 100 `bucket_spans`.
  1387. end::renormalization-window-days[]
  1388. tag::results-index-name[]
  1389. A text string that affects the name of the {ml} results index. The default value
  1390. is `shared`, which generates an index named `.ml-anomalies-shared`.
  1391. end::results-index-name[]
  1392. tag::results-retention-days[]
  1393. Advanced configuration option. The period of time (in days) that results are
  1394. retained. Age is calculated relative to the timestamp of the latest bucket
  1395. result. If this property has a non-null value, once per day at 00:30 (server
  1396. time), results that are the specified number of days older than the latest
  1397. bucket result are deleted from {es}. The default value is null, which means all
  1398. results are retained.
  1399. end::results-retention-days[]
  1400. tag::retain[]
  1401. If `true`, this snapshot will not be deleted during automatic cleanup of
  1402. snapshots older than `model_snapshot_retention_days`. However, this snapshot
  1403. will be deleted when the job is deleted. The default value is `false`.
  1404. end::retain[]
  1405. tag::script-fields[]
  1406. Specifies scripts that evaluate custom expressions and returns script fields to
  1407. the {dfeed}. The detector configuration objects in a job can contain functions
  1408. that use these script fields. For more information, see
  1409. {ml-docs}/ml-configuring-transform.html[Transforming data with script fields]
  1410. and <<request-body-search-script-fields,Script fields>>.
  1411. end::script-fields[]
  1412. tag::scroll-size[]
  1413. The `size` parameter that is used in {es} searches. The default value is `1000`.
  1414. end::scroll-size[]
  1415. tag::search-bucket-avg[]
  1416. The average search time per bucket, in milliseconds.
  1417. end::search-bucket-avg[]
  1418. tag::search-count[]
  1419. The number of searches run by the {dfeed}.
  1420. end::search-count[]
  1421. tag::search-exp-avg-hour[]
  1422. The exponential average search time per hour, in milliseconds.
  1423. end::search-exp-avg-hour[]
  1424. tag::search-time[]
  1425. The total time the {dfeed} spent searching, in milliseconds.
  1426. end::search-time[]
  1427. tag::size[]
  1428. Specifies the maximum number of {dfanalytics-jobs} to obtain. The default value
  1429. is `100`.
  1430. end::size[]
  1431. tag::snapshot-id[]
  1432. Identifier for the model snapshot.
  1433. end::snapshot-id[]
  1434. tag::source-put-dfa[]
  1435. The configuration of how to source the analysis data. It requires an `index`.
  1436. Optionally, `query` and `_source` may be specified.
  1437. +
  1438. .Properties of `source`
  1439. [%collapsible%open]
  1440. ====
  1441. `index`:::
  1442. (Required, string or array) Index or indices on which to perform the analysis.
  1443. It can be a single index or index pattern as well as an array of indices or
  1444. patterns.
  1445. +
  1446. WARNING: If your source indices contain documents with the same IDs, only the
  1447. document that is indexed last appears in the destination index.
  1448. `query`:::
  1449. (Optional, object) The {es} query domain-specific language (<<query-dsl,DSL>>).
  1450. This value corresponds to the query object in an {es} search POST body. All the
  1451. options that are supported by {es} can be used, as this object is passed
  1452. verbatim to {es}. By default, this property has the following value:
  1453. `{"match_all": {}}`.
  1454. `_source`:::
  1455. (Optional, object) Specify `includes` and/or `excludes` patterns to select which
  1456. fields will be present in the destination. Fields that are excluded cannot be
  1457. included in the analysis.
  1458. +
  1459. .Properties of `_source`
  1460. [%collapsible%open]
  1461. =====
  1462. `includes`::::
  1463. (array) An array of strings that defines the fields that will be included in the
  1464. destination.
  1465. `excludes`::::
  1466. (array) An array of strings that defines the fields that will be excluded from
  1467. the destination.
  1468. =====
  1469. ====
  1470. end::source-put-dfa[]
  1471. tag::sparse-bucket-count[]
  1472. The number of buckets that contained few data points compared to the expected
  1473. number of data points. If your data contains many sparse buckets, consider using
  1474. a longer `bucket_span`.
  1475. end::sparse-bucket-count[]
  1476. tag::standardization-enabled[]
  1477. If `true`, then the following operation is performed on the columns before
  1478. computing outlier scores: (x_i - mean(x_i)) / sd(x_i). Defaults to `true`. For
  1479. more information, see
  1480. https://en.wikipedia.org/wiki/Feature_scaling#Standardization_(Z-score_Normalization)[this wiki page about standardization].
  1481. end::standardization-enabled[]
  1482. tag::state-anomaly-job[]
  1483. The status of the {anomaly-job}, which can be one of the following values:
  1484. +
  1485. --
  1486. * `closed`: The job finished successfully with its model state persisted. The
  1487. job must be opened before it can accept further data.
  1488. * `closing`: The job close action is in progress and has not yet completed. A
  1489. closing job cannot accept further data.
  1490. * `failed`: The job did not finish successfully due to an error. This situation
  1491. can occur due to invalid input data, a fatal error occurring during the
  1492. analysis, or an external interaction such as the process being killed by the
  1493. Linux out of memory (OOM) killer. If the job had irrevocably failed, it must be
  1494. force closed and then deleted. If the {dfeed} can be corrected, the job can be
  1495. closed and then re-opened.
  1496. * `opened`: The job is available to receive and process data.
  1497. * `opening`: The job open action is in progress and has not yet completed.
  1498. --
  1499. end::state-anomaly-job[]
  1500. tag::state-datafeed[]
  1501. The status of the {dfeed}, which can be one of the following values:
  1502. +
  1503. --
  1504. * `starting`: The {dfeed} has been requested to start but has not yet started.
  1505. * `started`: The {dfeed} is actively receiving data.
  1506. * `stopping`: The {dfeed} has been requested to stop gracefully and is
  1507. completing its final action.
  1508. * `stopped`: The {dfeed} is stopped and will not receive data until it is
  1509. re-started.
  1510. --
  1511. end::state-datafeed[]
  1512. tag::summary-count-field-name[]
  1513. If this property is specified, the data that is fed to the job is expected to be
  1514. pre-summarized. This property value is the name of the field that contains the
  1515. count of raw data points that have been summarized. The same
  1516. `summary_count_field_name` applies to all detectors in the job.
  1517. +
  1518. --
  1519. NOTE: The `summary_count_field_name` property cannot be used with the `metric`
  1520. function.
  1521. --
  1522. end::summary-count-field-name[]
  1523. tag::tags[]
  1524. A comma delimited string of tags. A {infer} model can have many tags, or none.
  1525. When supplied, only {infer} models that contain all the supplied tags are
  1526. returned.
  1527. end::tags[]
  1528. tag::timeout-start[]
  1529. Controls the amount of time to wait until the {dfanalytics-job} starts. Defaults
  1530. to 20 seconds.
  1531. end::timeout-start[]
  1532. tag::timeout-stop[]
  1533. Controls the amount of time to wait until the {dfanalytics-job} stops. Defaults
  1534. to 20 seconds.
  1535. end::timeout-stop[]
  1536. tag::time-format[]
  1537. The time format, which can be `epoch`, `epoch_ms`, or a custom pattern. The
  1538. default value is `epoch`, which refers to UNIX or Epoch time (the number of
  1539. seconds since 1 Jan 1970). The value `epoch_ms` indicates that time is measured
  1540. in milliseconds since the epoch. The `epoch` and `epoch_ms` time formats accept
  1541. either integer or real values. +
  1542. +
  1543. NOTE: Custom patterns must conform to the Java `DateTimeFormatter` class.
  1544. When you use date-time formatting patterns, it is recommended that you provide
  1545. the full date, time and time zone. For example: `yyyy-MM-dd'T'HH:mm:ssX`.
  1546. If the pattern that you specify is not sufficient to produce a complete
  1547. timestamp, job creation fails.
  1548. end::time-format[]
  1549. tag::time-span[]
  1550. The time span that each search will be querying. This setting is only applicable
  1551. when the mode is set to `manual`. For example: `3h`.
  1552. end::time-span[]
  1553. tag::timestamp-results[]
  1554. The start time of the bucket for which these results were calculated.
  1555. end::timestamp-results[]
  1556. tag::tokenizer[]
  1557. The name or definition of the <<analysis-tokenizers,tokenizer>> to use after
  1558. character filters are applied. This property is compulsory if
  1559. `categorization_analyzer` is specified as an object. Machine learning provides a
  1560. tokenizer called `ml_classic` that tokenizes in the same way as the
  1561. non-customizable tokenizer in older versions of the product. If you want to use
  1562. that tokenizer but change the character or token filters, specify
  1563. `"tokenizer": "ml_classic"` in your `categorization_analyzer`.
  1564. end::tokenizer[]
  1565. tag::total-by-field-count[]
  1566. The number of `by` field values that were analyzed by the models. This value is
  1567. cumulative for all detectors in the job.
  1568. end::total-by-field-count[]
  1569. tag::total-category-count[]
  1570. The number of categories created by categorization.
  1571. end::total-category-count[]
  1572. tag::total-over-field-count[]
  1573. The number of `over` field values that were analyzed by the models. This value
  1574. is cumulative for all detectors in the job.
  1575. end::total-over-field-count[]
  1576. tag::total-partition-field-count[]
  1577. The number of `partition` field values that were analyzed by the models. This
  1578. value is cumulative for all detectors in the job.
  1579. end::total-partition-field-count[]
  1580. tag::trained-model-configs[]
  1581. An array of trained model resources, which are sorted by the `model_id` value in
  1582. ascending order.
  1583. +
  1584. .Properties of trained model resources
  1585. [%collapsible%open]
  1586. ====
  1587. `created_by`:::
  1588. (string)
  1589. Information on the creator of the trained model.
  1590. `create_time`:::
  1591. (<<time-units,time units>>)
  1592. The time when the trained model was created.
  1593. `default_field_map` :::
  1594. (object)
  1595. A string to string object that contains the default field map to use
  1596. when inferring against the model. For example, data frame analytics
  1597. may train the model on a specific multi-field `foo.keyword`.
  1598. The analytics job would then supply a default field map entry for
  1599. `"foo" : "foo.keyword"`.
  1600. +
  1601. Any field map described in the inference configuration takes precedence.
  1602. `estimated_heap_memory_usage_bytes`:::
  1603. (integer)
  1604. The estimated heap usage in bytes to keep the trained model in memory.
  1605. `estimated_operations`:::
  1606. (integer)
  1607. The estimated number of operations to use the trained model.
  1608. `license_level`:::
  1609. (string)
  1610. The license level of the trained model.
  1611. `metadata`:::
  1612. (object)
  1613. An object containing metadata about the trained model. For example, models
  1614. created by {dfanalytics} contain `analysis_config` and `input` objects.
  1615. `model_id`:::
  1616. (string)
  1617. Idetifier for the trained model.
  1618. `tags`:::
  1619. (string)
  1620. A comma delimited string of tags. A {infer} model can have many tags, or none.
  1621. `version`:::
  1622. (string)
  1623. The {es} version number in which the trained model was created.
  1624. ====
  1625. end::trained-model-configs[]
  1626. tag::training-percent[]
  1627. Defines what percentage of the eligible documents that will
  1628. be used for training. Documents that are ignored by the analysis (for example
  1629. those that contain arrays with more than one value) won’t be included in the
  1630. calculation for used percentage. Defaults to `100`.
  1631. end::training-percent[]
  1632. tag::use-null[]
  1633. Defines whether a new series is used as the null series when there is no value
  1634. for the by or partition fields. The default value is `false`.
  1635. end::use-null[]