multi-match-query.asciidoc 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555
  1. [[query-dsl-multi-match-query]]
  2. === Multi-match query
  3. ++++
  4. <titleabbrev>Multi-match</titleabbrev>
  5. ++++
  6. The `multi_match` query builds on the <<query-dsl-match-query,`match` query>>
  7. to allow multi-field queries:
  8. [source,console]
  9. --------------------------------------------------
  10. GET /_search
  11. {
  12. "query": {
  13. "multi_match" : {
  14. "query": "this is a test", <1>
  15. "fields": [ "subject", "message" ] <2>
  16. }
  17. }
  18. }
  19. --------------------------------------------------
  20. <1> The query string.
  21. <2> The fields to be queried.
  22. [discrete]
  23. [[field-boost]]
  24. ==== `fields` and per-field boosting
  25. Fields can be specified with wildcards, eg:
  26. [source,console]
  27. --------------------------------------------------
  28. GET /_search
  29. {
  30. "query": {
  31. "multi_match" : {
  32. "query": "Will Smith",
  33. "fields": [ "title", "*_name" ] <1>
  34. }
  35. }
  36. }
  37. --------------------------------------------------
  38. <1> Query the `title`, `first_name` and `last_name` fields.
  39. Individual fields can be boosted with the caret (`^`) notation:
  40. [source,console]
  41. --------------------------------------------------
  42. GET /_search
  43. {
  44. "query": {
  45. "multi_match" : {
  46. "query" : "this is a test",
  47. "fields" : [ "subject^3", "message" ] <1>
  48. }
  49. }
  50. }
  51. --------------------------------------------------
  52. <1> The query multiplies the `subject` field's score by three but leaves the
  53. `message` field's score unchanged.
  54. If no `fields` are provided, the `multi_match` query defaults to the `index.query.default_field`
  55. index settings, which in turn defaults to `*`. `*` extracts all fields in the mapping that
  56. are eligible to term queries and filters the metadata fields. All extracted fields are then
  57. combined to build a query.
  58. :query-type: multi-match
  59. include::combined-fields-query.asciidoc[tag=max-clause-limit]
  60. :query-type!:
  61. [[multi-match-types]]
  62. [discrete]
  63. ==== Types of `multi_match` query:
  64. The way the `multi_match` query is executed internally depends on the `type`
  65. parameter, which can be set to:
  66. [horizontal]
  67. `best_fields`:: (*default*) Finds documents which match any field, but
  68. uses the `_score` from the best field. See <<type-best-fields>>.
  69. `most_fields`:: Finds documents which match any field and combines
  70. the `_score` from each field. See <<type-most-fields>>.
  71. `cross_fields`:: Treats fields with the same `analyzer` as though they
  72. were one big field. Looks for each word in *any*
  73. field. See <<type-cross-fields>>.
  74. `phrase`:: Runs a `match_phrase` query on each field and uses the `_score`
  75. from the best field. See <<type-phrase>>.
  76. `phrase_prefix`:: Runs a `match_phrase_prefix` query on each field and uses
  77. the `_score` from the best field. See <<type-phrase>>.
  78. `bool_prefix`:: Creates a `match_bool_prefix` query on each field and
  79. combines the `_score` from each field. See
  80. <<type-bool-prefix>>.
  81. [[type-best-fields]]
  82. ==== `best_fields`
  83. The `best_fields` type is most useful when you are searching for multiple
  84. words best found in the same field. For instance ``brown fox'' in a single
  85. field is more meaningful than ``brown'' in one field and ``fox'' in the other.
  86. The `best_fields` type generates a <<query-dsl-match-query,`match` query>> for
  87. each field and wraps them in a <<query-dsl-dis-max-query,`dis_max`>> query, to
  88. find the single best matching field. For instance, this query:
  89. [source,console]
  90. --------------------------------------------------
  91. GET /_search
  92. {
  93. "query": {
  94. "multi_match" : {
  95. "query": "brown fox",
  96. "type": "best_fields",
  97. "fields": [ "subject", "message" ],
  98. "tie_breaker": 0.3
  99. }
  100. }
  101. }
  102. --------------------------------------------------
  103. would be executed as:
  104. [source,console]
  105. --------------------------------------------------
  106. GET /_search
  107. {
  108. "query": {
  109. "dis_max": {
  110. "queries": [
  111. { "match": { "subject": "brown fox" }},
  112. { "match": { "message": "brown fox" }}
  113. ],
  114. "tie_breaker": 0.3
  115. }
  116. }
  117. }
  118. --------------------------------------------------
  119. Normally the `best_fields` type uses the score of the *single* best matching
  120. field, but if `tie_breaker` is specified, then it calculates the score as
  121. follows:
  122. * the score from the best matching field
  123. * plus `tie_breaker * _score` for all other matching fields
  124. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  125. `fuzziness`, `lenient`, `prefix_length`, `max_expansions`, `fuzzy_rewrite`, `zero_terms_query`,
  126. `auto_generate_synonyms_phrase_query` and `fuzzy_transpositions`,
  127. as explained in <<query-dsl-match-query, match query>>.
  128. [IMPORTANT]
  129. [[operator-min]]
  130. .`operator` and `minimum_should_match`
  131. ===================================================
  132. The `best_fields` and `most_fields` types are _field-centric_ -- they generate
  133. a `match` query *per field*. This means that the `operator` and
  134. `minimum_should_match` parameters are applied to each field individually,
  135. which is probably not what you want.
  136. Take this query for example:
  137. [source,console]
  138. --------------------------------------------------
  139. GET /_search
  140. {
  141. "query": {
  142. "multi_match" : {
  143. "query": "Will Smith",
  144. "type": "best_fields",
  145. "fields": [ "first_name", "last_name" ],
  146. "operator": "and" <1>
  147. }
  148. }
  149. }
  150. --------------------------------------------------
  151. <1> All terms must be present.
  152. This query is executed as:
  153. (+first_name:will +first_name:smith)
  154. | (+last_name:will +last_name:smith)
  155. In other words, *all terms* must be present *in a single field* for a document
  156. to match.
  157. The <<query-dsl-combined-fields-query, `combined_fields`>> query offers a
  158. term-centric approach that handles `operator` and `minimum_should_match` on a
  159. per-term basis. The other multi-match mode <<type-cross-fields>> also
  160. addresses this issue.
  161. ===================================================
  162. [[type-most-fields]]
  163. ==== `most_fields`
  164. The `most_fields` type is most useful when querying multiple fields that
  165. contain the same text analyzed in different ways. For instance, the main
  166. field may contain synonyms, stemming and terms without diacritics. A second
  167. field may contain the original terms, and a third field might contain
  168. shingles. By combining scores from all three fields we can match as many
  169. documents as possible with the main field, but use the second and third fields
  170. to push the most similar results to the top of the list.
  171. This query:
  172. [source,console]
  173. --------------------------------------------------
  174. GET /_search
  175. {
  176. "query": {
  177. "multi_match" : {
  178. "query": "quick brown fox",
  179. "type": "most_fields",
  180. "fields": [ "title", "title.original", "title.shingles" ]
  181. }
  182. }
  183. }
  184. --------------------------------------------------
  185. would be executed as:
  186. [source,console]
  187. --------------------------------------------------
  188. GET /_search
  189. {
  190. "query": {
  191. "bool": {
  192. "should": [
  193. { "match": { "title": "quick brown fox" }},
  194. { "match": { "title.original": "quick brown fox" }},
  195. { "match": { "title.shingles": "quick brown fox" }}
  196. ]
  197. }
  198. }
  199. }
  200. --------------------------------------------------
  201. The score from each `match` clause is added together, just like a `bool` query.
  202. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  203. `fuzziness`, `lenient`, `prefix_length`, `max_expansions`, `fuzzy_rewrite`, and `zero_terms_query`.
  204. [[type-phrase]]
  205. ==== `phrase` and `phrase_prefix`
  206. The `phrase` and `phrase_prefix` types behave just like <<type-best-fields>>,
  207. but they use a `match_phrase` or `match_phrase_prefix` query instead of a
  208. `match` query.
  209. This query:
  210. [source,console]
  211. --------------------------------------------------
  212. GET /_search
  213. {
  214. "query": {
  215. "multi_match" : {
  216. "query": "quick brown f",
  217. "type": "phrase_prefix",
  218. "fields": [ "subject", "message" ]
  219. }
  220. }
  221. }
  222. --------------------------------------------------
  223. would be executed as:
  224. [source,console]
  225. --------------------------------------------------
  226. GET /_search
  227. {
  228. "query": {
  229. "dis_max": {
  230. "queries": [
  231. { "match_phrase_prefix": { "subject": "quick brown f" }},
  232. { "match_phrase_prefix": { "message": "quick brown f" }}
  233. ]
  234. }
  235. }
  236. }
  237. --------------------------------------------------
  238. Also, accepts `analyzer`, `boost`, `lenient` and `zero_terms_query` as explained
  239. in <<query-dsl-match-query>>, as well as `slop` which is explained in <<query-dsl-match-query-phrase>>.
  240. Type `phrase_prefix` additionally accepts `max_expansions`.
  241. [IMPORTANT]
  242. [[phrase-fuzziness]]
  243. .`phrase`, `phrase_prefix` and `fuzziness`
  244. ===================================================
  245. The `fuzziness` parameter cannot be used with the `phrase` or `phrase_prefix` type.
  246. ===================================================
  247. [[type-cross-fields]]
  248. ==== `cross_fields`
  249. The `cross_fields` type is particularly useful with structured documents where
  250. multiple fields *should* match. For instance, when querying the `first_name`
  251. and `last_name` fields for ``Will Smith'', the best match is likely to have
  252. ``Will'' in one field and ``Smith'' in the other.
  253. ****
  254. This sounds like a job for <<type-most-fields>> but there are two problems
  255. with that approach. The first problem is that `operator` and
  256. `minimum_should_match` are applied per-field, instead of per-term (see
  257. <<operator-min,explanation above>>).
  258. The second problem is to do with relevance: the different term frequencies in
  259. the `first_name` and `last_name` fields can produce unexpected results.
  260. For instance, imagine we have two people: ``Will Smith'' and ``Smith Jones''.
  261. ``Smith'' as a last name is very common (and so is of low importance) but
  262. ``Smith'' as a first name is very uncommon (and so is of great importance).
  263. If we do a search for ``Will Smith'', the ``Smith Jones'' document will
  264. probably appear above the better matching ``Will Smith'' because the score of
  265. `first_name:smith` has trumped the combined scores of `first_name:will` plus
  266. `last_name:smith`.
  267. ****
  268. One way of dealing with these types of queries is simply to index the
  269. `first_name` and `last_name` fields into a single `full_name` field. Of
  270. course, this can only be done at index time.
  271. The `cross_field` type tries to solve these problems at query time by taking a
  272. _term-centric_ approach. It first analyzes the query string into individual
  273. terms, then looks for each term in any of the fields, as though they were one
  274. big field.
  275. A query like:
  276. [source,console]
  277. --------------------------------------------------
  278. GET /_search
  279. {
  280. "query": {
  281. "multi_match" : {
  282. "query": "Will Smith",
  283. "type": "cross_fields",
  284. "fields": [ "first_name", "last_name" ],
  285. "operator": "and"
  286. }
  287. }
  288. }
  289. --------------------------------------------------
  290. is executed as:
  291. +(first_name:will last_name:will)
  292. +(first_name:smith last_name:smith)
  293. In other words, *all terms* must be present *in at least one field* for a
  294. document to match. (Compare this to
  295. <<operator-min,the logic used for `best_fields` and `most_fields`>>.)
  296. That solves one of the two problems. The problem of differing term frequencies
  297. is solved by _blending_ the term frequencies for all fields in order to even
  298. out the differences.
  299. In practice, `first_name:smith` will be treated as though it has the same
  300. frequencies as `last_name:smith`, plus one. This will make matches on
  301. `first_name` and `last_name` have comparable scores, with a tiny advantage
  302. for `last_name` since it is the most likely field that contains `smith`.
  303. Note that `cross_fields` is usually only useful on short string fields
  304. that all have a `boost` of `1`. Otherwise boosts, term freqs and length
  305. normalization contribute to the score in such a way that the blending of term
  306. statistics is not meaningful anymore.
  307. If you run the above query through the <<search-validate>>, it returns this
  308. explanation:
  309. +blended("will", fields: [first_name, last_name])
  310. +blended("smith", fields: [first_name, last_name])
  311. Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,
  312. `lenient` and `zero_terms_query`.
  313. WARNING: The `cross_fields` type blends field statistics in a complex way that
  314. can be hard to interpret. The score combination can even be incorrect, in
  315. particular when some documents contain some of the search fields, but not all
  316. of them. You should consider the
  317. <<query-dsl-combined-fields-query,`combined_fields`>> query as an alternative,
  318. which is also term-centric but combines field statistics in a more robust way.
  319. [[cross-field-analysis]]
  320. ===== `cross_field` and analysis
  321. The `cross_field` type can only work in term-centric mode on fields that have
  322. the same analyzer. Fields with the same analyzer are grouped together as in
  323. the example above. If there are multiple groups, the query will use the best
  324. score from any group.
  325. For instance, if we have a `first` and `last` field which have
  326. the same analyzer, plus a `first.edge` and `last.edge` which
  327. both use an `edge_ngram` analyzer, this query:
  328. [source,console]
  329. --------------------------------------------------
  330. GET /_search
  331. {
  332. "query": {
  333. "multi_match" : {
  334. "query": "Jon",
  335. "type": "cross_fields",
  336. "fields": [
  337. "first", "first.edge",
  338. "last", "last.edge"
  339. ]
  340. }
  341. }
  342. }
  343. --------------------------------------------------
  344. would be executed as:
  345. blended("jon", fields: [first, last])
  346. | (
  347. blended("j", fields: [first.edge, last.edge])
  348. blended("jo", fields: [first.edge, last.edge])
  349. blended("jon", fields: [first.edge, last.edge])
  350. )
  351. In other words, `first` and `last` would be grouped together and
  352. treated as a single field, and `first.edge` and `last.edge` would be
  353. grouped together and treated as a single field.
  354. Having multiple groups is fine, but when combined with `operator` or
  355. `minimum_should_match`, it can suffer from the <<operator-min,same problem>>
  356. as `most_fields` or `best_fields`.
  357. You can easily rewrite this query yourself as two separate `cross_fields`
  358. queries combined with a `dis_max` query, and apply the `minimum_should_match`
  359. parameter to just one of them:
  360. [source,console]
  361. --------------------------------------------------
  362. GET /_search
  363. {
  364. "query": {
  365. "dis_max": {
  366. "queries": [
  367. {
  368. "multi_match" : {
  369. "query": "Will Smith",
  370. "type": "cross_fields",
  371. "fields": [ "first", "last" ],
  372. "minimum_should_match": "50%" <1>
  373. }
  374. },
  375. {
  376. "multi_match" : {
  377. "query": "Will Smith",
  378. "type": "cross_fields",
  379. "fields": [ "*.edge" ]
  380. }
  381. }
  382. ]
  383. }
  384. }
  385. }
  386. --------------------------------------------------
  387. <1> Either `will` or `smith` must be present in either of the `first`
  388. or `last` fields
  389. You can force all fields into the same group by specifying the `analyzer`
  390. parameter in the query.
  391. [source,console]
  392. --------------------------------------------------
  393. GET /_search
  394. {
  395. "query": {
  396. "multi_match" : {
  397. "query": "Jon",
  398. "type": "cross_fields",
  399. "analyzer": "standard", <1>
  400. "fields": [ "first", "last", "*.edge" ]
  401. }
  402. }
  403. }
  404. --------------------------------------------------
  405. <1> Use the `standard` analyzer for all fields.
  406. which will be executed as:
  407. blended("will", fields: [first, first.edge, last.edge, last])
  408. blended("smith", fields: [first, first.edge, last.edge, last])
  409. [[tie-breaker]]
  410. ===== `tie_breaker`
  411. By default, each per-term `blended` query will use the best score returned by
  412. any field in a group. Then when combining scores across groups, the query uses
  413. the best score from any group. The `tie_breaker` parameter can change the
  414. behavior for both of these steps:
  415. [horizontal]
  416. `0.0`:: Take the single best score out of (eg) `first_name:will`
  417. and `last_name:will` (default)
  418. `1.0`:: Add together the scores for (eg) `first_name:will` and
  419. `last_name:will`
  420. `0.0 < n < 1.0`:: Take the single best score plus +tie_breaker+ multiplied
  421. by each of the scores from other matching fields/ groups
  422. [IMPORTANT]
  423. [[crossfields-fuzziness]]
  424. .`cross_fields` and `fuzziness`
  425. ===================================================
  426. The `fuzziness` parameter cannot be used with the `cross_fields` type.
  427. ===================================================
  428. [[type-bool-prefix]]
  429. ==== `bool_prefix`
  430. The `bool_prefix` type's scoring behaves like <<type-most-fields>>, but using a
  431. <<query-dsl-match-bool-prefix-query,`match_bool_prefix` query>> instead of a
  432. `match` query.
  433. [source,console]
  434. --------------------------------------------------
  435. GET /_search
  436. {
  437. "query": {
  438. "multi_match" : {
  439. "query": "quick brown f",
  440. "type": "bool_prefix",
  441. "fields": [ "subject", "message" ]
  442. }
  443. }
  444. }
  445. --------------------------------------------------
  446. The `analyzer`, `boost`, `operator`, `minimum_should_match`, `lenient`,
  447. `zero_terms_query`, and `auto_generate_synonyms_phrase_query` parameters as
  448. explained in <<query-dsl-match-query, match query>> are supported. The
  449. `fuzziness`, `prefix_length`, `max_expansions`, `fuzzy_rewrite`, and
  450. `fuzzy_transpositions` parameters are supported for the terms that are used to
  451. construct term queries, but do not have an effect on the prefix query
  452. constructed from the final term.
  453. The `slop` parameter is not supported by this query type.