123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443 |
- [[search-aggregations-bucket-range-aggregation]]
- === Range aggregation
- ++++
- <titleabbrev>Range</titleabbrev>
- ++++
- A multi-bucket value source based aggregation that enables the user to define a set of ranges - each representing a bucket. During the aggregation process, the values extracted from each document will be checked against each bucket range and "bucket" the relevant/matching document.
- Note that this aggregation includes the `from` value and excludes the `to` value for each range.
- Example:
- [source,console,id=range-aggregation-example]
- ----
- GET sales/_search
- {
- "aggs": {
- "price_ranges": {
- "range": {
- "field": "price",
- "ranges": [
- { "to": 100.0 },
- { "from": 100.0, "to": 200.0 },
- { "from": 200.0 }
- ]
- }
- }
- }
- }
- ----
- // TEST[setup:sales]
- // TEST[s/_search/_search\?filter_path=aggregations/]
- Response:
- [source,console-result]
- ----
- {
- ...
- "aggregations": {
- "price_ranges": {
- "buckets": [
- {
- "key": "*-100.0",
- "to": 100.0,
- "doc_count": 2
- },
- {
- "key": "100.0-200.0",
- "from": 100.0,
- "to": 200.0,
- "doc_count": 2
- },
- {
- "key": "200.0-*",
- "from": 200.0,
- "doc_count": 3
- }
- ]
- }
- }
- }
- ----
- // TESTRESPONSE[s/\.\.\.//]
- ==== Keyed Response
- Setting the `keyed` flag to `true` will associate a unique string key with each bucket and return the ranges as a hash rather than an array:
- [source,console,id=range-aggregation-keyed-example]
- ----
- GET sales/_search
- {
- "aggs": {
- "price_ranges": {
- "range": {
- "field": "price",
- "keyed": true,
- "ranges": [
- { "to": 100 },
- { "from": 100, "to": 200 },
- { "from": 200 }
- ]
- }
- }
- }
- }
- ----
- // TEST[setup:sales]
- // TEST[s/_search/_search\?filter_path=aggregations/]
- Response:
- [source,console-result]
- ----
- {
- ...
- "aggregations": {
- "price_ranges": {
- "buckets": {
- "*-100.0": {
- "to": 100.0,
- "doc_count": 2
- },
- "100.0-200.0": {
- "from": 100.0,
- "to": 200.0,
- "doc_count": 2
- },
- "200.0-*": {
- "from": 200.0,
- "doc_count": 3
- }
- }
- }
- }
- }
- ----
- // TESTRESPONSE[s/\.\.\.//]
- It is also possible to customize the key for each range:
- [source,console,id=range-aggregation-custom-keys-example]
- ----
- GET sales/_search
- {
- "aggs": {
- "price_ranges": {
- "range": {
- "field": "price",
- "keyed": true,
- "ranges": [
- { "key": "cheap", "to": 100 },
- { "key": "average", "from": 100, "to": 200 },
- { "key": "expensive", "from": 200 }
- ]
- }
- }
- }
- }
- ----
- // TEST[setup:sales]
- // TEST[s/_search/_search\?filter_path=aggregations/]
- Response:
- [source,console-result]
- ----
- {
- ...
- "aggregations": {
- "price_ranges": {
- "buckets": {
- "cheap": {
- "to": 100.0,
- "doc_count": 2
- },
- "average": {
- "from": 100.0,
- "to": 200.0,
- "doc_count": 2
- },
- "expensive": {
- "from": 200.0,
- "doc_count": 3
- }
- }
- }
- }
- }
- ----
- // TESTRESPONSE[s/\.\.\.//]
- ==== Script
- If the data in your documents doesn't exactly match what you'd like to aggregate,
- use a <<runtime,runtime field>>. For example, if you need to
- apply a particular currency conversion rate:
- [source,console,id=range-aggregation-runtime-field-example]
- ----
- GET sales/_search
- {
- "runtime_mappings": {
- "price.euros": {
- "type": "double",
- "script": {
- "source": """
- emit(doc['price'].value * params.conversion_rate)
- """,
- "params": {
- "conversion_rate": 0.835526591
- }
- }
- }
- },
- "aggs": {
- "price_ranges": {
- "range": {
- "field": "price.euros",
- "ranges": [
- { "to": 100 },
- { "from": 100, "to": 200 },
- { "from": 200 }
- ]
- }
- }
- }
- }
- ----
- // TEST[setup:sales]
- // TEST[s/_search/_search\?filter_path=aggregations/]
- //////////////////////////
- [source,console-result]
- ----
- {
- "aggregations": {
- "price_ranges": {
- "buckets": [
- {
- "key": "*-100.0",
- "to": 100.0,
- "doc_count": 2
- },
- {
- "key": "100.0-200.0",
- "from": 100.0,
- "to": 200.0,
- "doc_count": 5
- },
- {
- "key": "200.0-*",
- "from": 200.0,
- "doc_count": 0
- }
- ]
- }
- }
- }
- ----
- //////////////////////////
- ==== Sub Aggregations
- The following example, not only "bucket" the documents to the different buckets but also computes statistics over the prices in each price range
- [source,console,id=range-aggregation-sub-aggregation-example]
- ----
- GET sales/_search
- {
- "aggs": {
- "price_ranges": {
- "range": {
- "field": "price",
- "ranges": [
- { "to": 100 },
- { "from": 100, "to": 200 },
- { "from": 200 }
- ]
- },
- "aggs": {
- "price_stats": {
- "stats": { "field": "price" }
- }
- }
- }
- }
- }
- ----
- // TEST[setup:sales]
- // TEST[s/_search/_search\?filter_path=aggregations/]
- Response:
- [source,console-result]
- ----
- {
- ...
- "aggregations": {
- "price_ranges": {
- "buckets": [
- {
- "key": "*-100.0",
- "to": 100.0,
- "doc_count": 2,
- "price_stats": {
- "count": 2,
- "min": 10.0,
- "max": 50.0,
- "avg": 30.0,
- "sum": 60.0
- }
- },
- {
- "key": "100.0-200.0",
- "from": 100.0,
- "to": 200.0,
- "doc_count": 2,
- "price_stats": {
- "count": 2,
- "min": 150.0,
- "max": 175.0,
- "avg": 162.5,
- "sum": 325.0
- }
- },
- {
- "key": "200.0-*",
- "from": 200.0,
- "doc_count": 3,
- "price_stats": {
- "count": 3,
- "min": 200.0,
- "max": 200.0,
- "avg": 200.0,
- "sum": 600.0
- }
- }
- ]
- }
- }
- }
- ----
- // TESTRESPONSE[s/\.\.\.//]
- [[search-aggregations-bucket-range-aggregation-histogram-fields]]
- ==== Histogram fields
- Running a range aggregation over histogram fields computes the total number of counts for each configured range.
- This is done without interpolating between the histogram field values. Consequently, it is possible to have a range
- that is "in-between" two histogram values. The resulting range bucket would have a zero doc count.
- Here is an example, executing a range aggregation against the following index that stores pre-aggregated histograms
- with latency metrics (in milliseconds) for different networks:
- [source,console]
- ----
- PUT metrics_index
- {
- "mappings": {
- "properties": {
- "network": {
- "properties": {
- "name": {
- "type": "keyword"
- }
- }
- },
- "latency_histo": {
- "type": "histogram"
- }
- }
- }
- }
- PUT metrics_index/_doc/1?refresh
- {
- "network.name" : "net-1",
- "latency_histo" : {
- "values" : [1, 3, 8, 12, 15],
- "counts" : [3, 7, 23, 12, 6]
- }
- }
- PUT metrics_index/_doc/2?refresh
- {
- "network.name" : "net-2",
- "latency_histo" : {
- "values" : [1, 6, 8, 12, 14],
- "counts" : [8, 17, 8, 7, 6]
- }
- }
- GET metrics_index/_search?size=0&filter_path=aggregations
- {
- "aggs": {
- "latency_ranges": {
- "range": {
- "field": "latency_histo",
- "ranges": [
- {"to": 2},
- {"from": 2, "to": 3},
- {"from": 3, "to": 10},
- {"from": 10}
- ]
- }
- }
- }
- }
- ----
- The `range` aggregation will sum the counts of each range computed based on the `values` and
- return the following output:
- [source,console-result]
- ----
- {
- "aggregations": {
- "latency_ranges": {
- "buckets": [
- {
- "key": "*-2.0",
- "to": 2.0,
- "doc_count": 11
- },
- {
- "key": "2.0-3.0",
- "from": 2.0,
- "to": 3.0,
- "doc_count": 0
- },
- {
- "key": "3.0-10.0",
- "from": 3.0,
- "to": 10.0,
- "doc_count": 55
- },
- {
- "key": "10.0-*",
- "from": 10.0,
- "doc_count": 31
- }
- ]
- }
- }
- }
- ----
- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/]
- [IMPORTANT]
- ========
- Range aggregation is a bucket aggregation, which partitions documents into buckets rather than calculating metrics over fields like
- metrics aggregations do. Each bucket represents a collection of documents which sub-aggregations can run on.
- On the other hand, a histogram field is a pre-aggregated field representing multiple values inside a single field:
- buckets of numerical data and a count of items/documents for each bucket. This mismatch between the range aggregations expected input
- (expecting raw documents) and the histogram field (that provides summary information) limits the outcome of the aggregation
- to only the doc counts for each bucket.
- **Consequently, when executing a range aggregation over a histogram field, no sub-aggregations are allowed.**
- ========
|