12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- [role="xpack"]
- [[ml-geo-functions]]
- === Geographic functions
- The geographic functions detect anomalies in the geographic location of the
- input data.
- The {ml-features} include the following geographic function: `lat_long`.
- NOTE: You cannot create forecasts for {anomaly-jobs} that contain geographic
- functions. You also cannot add rules with conditions to detectors that use
- geographic functions.
- [float]
- [[ml-lat-long]]
- ==== Lat_long
- The `lat_long` function detects anomalies in the geographic location of the
- input data.
- This function supports the following properties:
- * `field_name` (required)
- * `by_field_name` (optional)
- * `over_field_name` (optional)
- * `partition_field_name` (optional)
- For more information about those properties,
- see {ref}/ml-job-resource.html#ml-detectorconfig[Detector configuration objects].
- .Example 1: Analyzing transactions with the lat_long function
- [source,console]
- --------------------------------------------------
- PUT _ml/anomaly_detectors/example1
- {
- "analysis_config": {
- "detectors": [{
- "function" : "lat_long",
- "field_name" : "transactionCoordinates",
- "by_field_name" : "creditCardNumber"
- }]
- },
- "data_description": {
- "time_field":"timestamp",
- "time_format": "epoch_ms"
- }
- }
- --------------------------------------------------
- // TEST[skip:needs-licence]
- If you use this `lat_long` function in a detector in your {anomaly-job}, it
- detects anomalies where the geographic location of a credit card transaction is
- unusual for a particular customer’s credit card. An anomaly might indicate fraud.
- IMPORTANT: The `field_name` that you supply must be a single string that contains
- two comma-separated numbers of the form `latitude,longitude`, a `geo_point` field,
- a `geo_shape` field that contains point values, or a `geo_centroid` aggregation.
- The `latitude` and `longitude` must be in the range -180 to 180 and represent a
- point on the surface of the Earth.
- For example, JSON data might contain the following transaction coordinates:
- [source,js]
- --------------------------------------------------
- {
- "time": 1460464275,
- "transactionCoordinates": "40.7,-74.0",
- "creditCardNumber": "1234123412341234"
- }
- --------------------------------------------------
- // NOTCONSOLE
- In {es}, location data is likely to be stored in `geo_point` fields. For more
- information, see {ref}/geo-point.html[Geo-point datatype]. This data type is
- supported natively in {ml-features}. Specifically, {dfeed} when pulling data from
- a `geo_point` field, will transform the data into the appropriate `lat,lon` string
- format before sending to the {anomaly-job}.
- For more information, see <<ml-configuring-transform>>.
|