| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508 | [[query-dsl-multi-match-query]]=== Multi Match QueryThe `multi_match` query builds on the <<query-dsl-match-query,`match` query>>to allow multi-field queries:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":    "this is a test", <1>      "fields": [ "subject", "message" ] <2>    }  }}--------------------------------------------------// CONSOLE<1> The query string.<2> The fields to be queried.[float]==== `fields` and per-field boostingFields can be specified with wildcards, eg:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":    "Will Smith",      "fields": [ "title", "*_name" ] <1>    }  }}--------------------------------------------------// CONSOLE<1> Query the `title`, `first_name` and `last_name` fields.Individual fields can be boosted with the caret (`^`) notation:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query" : "this is a test",      "fields" : [ "subject^3", "message" ] <1>    }  }}--------------------------------------------------// CONSOLE<1> The `subject` field is three times as important as the `message` field.[[multi-match-types]][float]==== Types of `multi_match` query:The way the `multi_match` query is executed internally depends on the `type`parameter, which can be set to:[horizontal]`best_fields`::     (*default*) Finds documents which match any field, but                    uses the  `_score` from the best field.  See <<type-best-fields>>.`most_fields`::     Finds documents which match any field and combines                    the `_score` from each field.  See <<type-most-fields>>.`cross_fields`::    Treats fields with the same `analyzer` as though they                    were one big field. Looks for each word in *any*                    field. See <<type-cross-fields>>.`phrase`::          Runs a `match_phrase` query on each field and combines                    the `_score` from each field.  See <<type-phrase>>.`phrase_prefix`::   Runs a `match_phrase_prefix` query on each field and                    combines the `_score` from each field.  See <<type-phrase>>.[[type-best-fields]]==== `best_fields`The `best_fields` type is most useful when you are searching for multiplewords best found in the same field. For instance ``brown fox'' in a singlefield is more meaningful than ``brown'' in one field and ``fox'' in the other.The `best_fields` type generates a <<query-dsl-match-query,`match` query>> foreach field and wraps them in a <<query-dsl-dis-max-query,`dis_max`>> query, tofind the single best matching field.  For instance, this query:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":      "brown fox",      "type":       "best_fields",      "fields":     [ "subject", "message" ],      "tie_breaker": 0.3    }  }}--------------------------------------------------// CONSOLEwould be executed as:[source,js]--------------------------------------------------GET /_search{  "query": {    "dis_max": {      "queries": [        { "match": { "subject": "brown fox" }},        { "match": { "message": "brown fox" }}      ],      "tie_breaker": 0.3    }  }}--------------------------------------------------// CONSOLENormally the `best_fields` type uses the score of the *single* best matchingfield, but if `tie_breaker` is specified, then it calculates the score asfollows:  * the score from the best matching field  * plus `tie_breaker * _score` for all other matching fieldsAlso, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,`fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`and `cutoff_frequency`, as explained in <<query-dsl-match-query, match query>>.[IMPORTANT][[operator-min]].`operator` and `minimum_should_match`===================================================The `best_fields` and `most_fields` types are _field-centric_ -- they generatea `match` query *per field*.  This means that the `operator` and`minimum_should_match` parameters are applied to each field individually,which is probably not what you want.Take this query for example:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":      "Will Smith",      "type":       "best_fields",      "fields":     [ "first_name", "last_name" ],      "operator":   "and" <1>    }  }}--------------------------------------------------// CONSOLE<1> All terms must be present.This query is executed as:      (+first_name:will +first_name:smith)    | (+last_name:will  +last_name:smith)In other words, *all terms* must be present *in a single field* for a documentto match.See <<type-cross-fields>> for a better solution.===================================================[[type-most-fields]]==== `most_fields`The `most_fields` type is most useful when querying multiple fields thatcontain the same text analyzed in different ways.  For instance, the mainfield may contain synonyms, stemming and terms without diacritics. A secondfield may contain the original terms, and a third field might containshingles. By combining scores from all three fields we can match as manydocuments as possible with the main field, but use the second and third fieldsto push the most similar results to the top of the list.This query:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":      "quick brown fox",      "type":       "most_fields",      "fields":     [ "title", "title.original", "title.shingles" ]    }  }}--------------------------------------------------// CONSOLEwould be executed as:[source,js]--------------------------------------------------GET /_search{  "query": {    "bool": {      "should": [        { "match": { "title":          "quick brown fox" }},        { "match": { "title.original": "quick brown fox" }},        { "match": { "title.shingles": "quick brown fox" }}      ]    }  }}--------------------------------------------------// CONSOLEThe score from each `match` clause is added together, then divided by thenumber of `match` clauses.Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,`fuzziness`, `prefix_length`, `max_expansions`, `rewrite`, `zero_terms_query`and `cutoff_frequency`, as explained in <<query-dsl-match-query,match query>>, but*see <<operator-min>>*.[[type-phrase]]==== `phrase` and `phrase_prefix`The `phrase` and `phrase_prefix` types behave just like <<type-best-fields>>,but they use a `match_phrase` or `match_phrase_prefix` query instead of a`match` query.This query:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":      "quick brown f",      "type":       "phrase_prefix",      "fields":     [ "subject", "message" ]    }  }}--------------------------------------------------// CONSOLEwould be executed as:[source,js]--------------------------------------------------GET /_search{  "query": {    "dis_max": {      "queries": [        { "match_phrase_prefix": { "subject": "quick brown f" }},        { "match_phrase_prefix": { "message": "quick brown f" }}      ]    }  }}--------------------------------------------------// CONSOLEAlso, accepts `analyzer`, `boost`, `slop` and `zero_terms_query`  as explainedin <<query-dsl-match-query>>.  Type `phrase_prefix` additionally accepts`max_expansions`.[IMPORTANT][[phrase-fuzziness]].`phrase`, `phrase_prefix` and `fuzziness`===================================================The `fuzziness` parameter cannot be used with the `phrase` or `phrase_prefix` type.===================================================[[type-cross-fields]]==== `cross_fields`The `cross_fields` type is particularly useful with structured documents wheremultiple fields *should* match.  For instance, when querying the `first_name`and `last_name` fields for ``Will Smith'', the best match is likely to have``Will'' in one field and ``Smith'' in the other.****This sounds like a job for <<type-most-fields>> but there are two problemswith that approach. The first problem is that `operator` and`minimum_should_match` are applied per-field, instead of per-term (see<<operator-min,explanation above>>).The second problem is to do with relevance: the different term frequencies inthe `first_name` and `last_name` fields   can produce unexpected results.For instance, imagine we have two people: ``Will Smith'' and ``Smith Jones''.``Smith'' as a last name is very common (and so is of low importance) but``Smith'' as a first name is very uncommon (and so is of great importance).If we do a search for ``Will Smith'', the ``Smith Jones'' document willprobably appear above the better matching ``Will Smith'' because the score of`first_name:smith` has trumped the combined scores of `first_name:will` plus`last_name:smith`.****One way of dealing with these types of queries is simply to index the`first_name` and `last_name` fields into a single `full_name` field.  Ofcourse, this can only be done at index time.The `cross_field` type tries to solve these problems at query time by taking a_term-centric_ approach.  It first analyzes the query string into individualterms, then looks for each term in any of the fields, as though they were onebig field.A query like:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":      "Will Smith",      "type":       "cross_fields",      "fields":     [ "first_name", "last_name" ],      "operator":   "and"    }  }}--------------------------------------------------// CONSOLEis executed as:    +(first_name:will  last_name:will)    +(first_name:smith last_name:smith)In other words, *all terms* must be present *in at least one field* for adocument to match.  (Compare this to<<operator-min,the logic used for `best_fields` and `most_fields`>>.)That solves one of the two problems. The problem of differing term frequenciesis solved by _blending_ the term frequencies for all fields in order to evenout the differences.In practice, `first_name:smith` will be treated as though it has the samefrequencies as `last_name:smith`, plus one. This will make matches on`first_name` and `last_name` have comparable scores, with a tiny advantagefor `last_name` since it is the most likely field that contains `smith`.Note that `cross_fields` is usually only useful on short string fieldsthat all have a `boost` of `1`. Otherwise boosts, term freqs and lengthnormalization contribute to the score in such a way that the blending of termstatistics is not meaningful anymore.If you run the above query through the <<search-validate>>, it returns thisexplanation:    +blended("will",  fields: [first_name, last_name])    +blended("smith", fields: [first_name, last_name])Also, accepts `analyzer`, `boost`, `operator`, `minimum_should_match`,`zero_terms_query` and `cutoff_frequency`, as explained in<<query-dsl-match-query, match query>>.===== `cross_field` and analysisThe `cross_field` type can only work in term-centric mode on fields that havethe same analyzer. Fields with the same analyzer are grouped together as inthe example above.  If there are multiple groups, they are combined with a`bool` query.For instance, if we have a `first` and `last` field which havethe same analyzer, plus a `first.edge` and `last.edge` whichboth use an `edge_ngram` analyzer, this query:[source,js]--------------------------------------------------GET /_search{  "query": {    "multi_match" : {      "query":      "Jon",      "type":       "cross_fields",      "fields":     [        "first", "first.edge",        "last",  "last.edge"      ]    }  }}--------------------------------------------------// CONSOLEwould be executed as:        blended("jon", fields: [first, last])    | (        blended("j",   fields: [first.edge, last.edge])        blended("jo",  fields: [first.edge, last.edge])        blended("jon", fields: [first.edge, last.edge])    )In other words, `first` and `last` would be grouped together andtreated as a single field, and `first.edge` and `last.edge` would begrouped together and treated as a single field.Having multiple groups is fine, but when combined with `operator` or`minimum_should_match`, it can suffer from the <<operator-min,same problem>>as `most_fields` or `best_fields`.You can easily rewrite this query yourself as two separate `cross_fields`queries combined with a `bool` query, and apply the `minimum_should_match`parameter to just one of them:[source,js]--------------------------------------------------GET /_search{  "query": {    "bool": {      "should": [        {          "multi_match" : {            "query":      "Will Smith",            "type":       "cross_fields",            "fields":     [ "first", "last" ],            "minimum_should_match": "50%" <1>          }        },        {          "multi_match" : {            "query":      "Will Smith",            "type":       "cross_fields",            "fields":     [ "*.edge" ]          }        }      ]    }  }}--------------------------------------------------// CONSOLE <1> Either `will` or `smith` must be present in either of the `first`    or `last` fieldsYou can force all fields into the same group by specifying the `analyzer`parameter in the query.[source,js]--------------------------------------------------GET /_search{  "query": {   "multi_match" : {      "query":      "Jon",      "type":       "cross_fields",      "analyzer":   "standard", <1>      "fields":     [ "first", "last", "*.edge" ]    }  }}--------------------------------------------------// CONSOLE<1> Use the `standard` analyzer for all fields.which will be executed as:    blended("will",  fields: [first, first.edge, last.edge, last])    blended("smith", fields: [first, first.edge, last.edge, last])===== `tie_breaker`By default, each per-term `blended` query will use the best score returned byany field in a group, then these scores are added together to give the finalscore. The `tie_breaker` parameter can change the default behaviour of theper-term `blended` queries. It accepts:[horizontal]`0.0`::             Take the single best score out of (eg) `first_name:will`                    and `last_name:will` (*default*)`1.0`::             Add together the scores for (eg) `first_name:will` and                    `last_name:will``0.0 < n < 1.0`::   Take the single best score plus +tie_breaker+ multiplied                    by each of the scores from other matching fields.[IMPORTANT][[crossfields-fuzziness]].`cross_fields` and `fuzziness`===================================================The `fuzziness` parameter cannot be used with the `cross_fields` type.===================================================
 |